98%
921
2 minutes
20
Obligate anaerobic bacteria in genus are among the most dominant taxa in the colon of healthy individuals and contribute to intestinal homeostasis. A decline in the abundance of this genus is associated with the occurrence of various gastrointestinal disorders, including inflammatory bowel diseases. In the colon, these diseases are accompanied by an imbalance between the generation and elimination of reactive oxygen species (ROS), and oxidative stress is closely linked to disruptions in anaerobiosis. In this work, we explored the impact of oxidative stress on several strains of faecalibacteria. An analysis of complete genomes of faecalibacteria revealed the presence of genes encoding O- and/or ROS-detoxifying enzymes, including flavodiiron proteins, rubrerythrins, reverse rubrerythrins, superoxide reductases, and alkyl peroxidase. However, the presence and the number of these detoxification systems varied greatly among faecalibacteria. These results were confirmed by O stress survival tests, in which we found that strains differed widely in their sensitivity. We showed the protective role of cysteine, which limited the production of extracellular O and improved the survival of Faecalibacterium longum L2-6 under high O tension. In the strain L2-6, we observed that the expression of genes encoding detoxifying enzymes was upregulated in the response to O or HO stress but with different patterns of regulation. Based on these results, we propose a first model of the gene regulatory network involved in the response to oxidative stress in L2-6. Commensal bacteria in the genus have been proposed for use as next-generation probiotics, but efforts to cultivate and exploit the potential of these strains have been limited by their sensitivity to O. More broadly, little is known about how commensal and health-associated bacterial species in the human microbiome respond to the oxidative stress that occurs as a result of inflammation in the colon. In this work, we provide insights regarding the genes that encode potential mechanisms of protection against O or ROS stress in faecalibacteria, which may facilitate future advances in work with these important bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370306 | PMC |
http://dx.doi.org/10.1128/aem.00606-23 | DOI Listing |
Histol Histopathol
September 2025
Center for Experimental Teaching, School of Pharmacy, Guangzhou Medical University, Guangzhou, China.
Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.
Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.
Antioxid Redox Signal
September 2025
Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis. The relationship between SIC and protein acetylation, particularly the balance between acetylation and deacetylation in cardiomyocyte subcellular structures, as well as how nuclear-mitochondrial coordination maintains standard antioxidant stress capacity, remains unclear. This study focused on exploring the nuclear-mitochondrial regulatory mechanisms formed by the interplay of Sirtuin 3 (SIRT3) and Forkhead box O3a (FOXO3a).
View Article and Find Full Text PDFLab Chip
September 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Photodynamic therapy (PDT) induces oxidative stress that triggers a compensatory upregulation of intracellular glutathione (GSH), thereby diminishing PDT efficacy. The simultaneous generation of reactive oxygen species and depletion of GSH holds promise for amplifying oxidative damage and enhancing therapeutic outcomes yet remains a challenge. In this work, we present a Type-I supramolecular photosensitizer designed to deplete GSH through a hydrogen atom transfer mechanism while concurrently generating superoxide radicals.
View Article and Find Full Text PDFChembiochem
September 2025
School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.
The ATPase caseinolytic protease X (ClpX), forming the ClpXP complex with caseinolytic protease P (ClpP), is essential for mitochondrial protein homeostasis. While ClpP targeting is a recognized anticancer strategy, the role of ClpX in cancer remains underexplored. In pancreatic ductal adenocarcinoma (PDAC), elevated CLPX expression correlates with poor prognosis, suggesting its oncogenic function.
View Article and Find Full Text PDF