Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The increasing number of skin cancer cases worldwide and the adverse side effects of current treatments have led to the search for new anticancer agents. In this present work, the anticancer potential of the natural flavanone 1, extracted from , and four flavanone derivatives 1a-d obtained by different reactions from 1 was investigated by an in silico study and through cytotoxicity assays in melanoma (M21), cervical cancer (HeLa) cell lines and in a non-tumor cell line (HEK-293). The free compounds and compounds loaded in biopolymeric nanoparticles (PLGA NPs 1, 1a-d) were assayed. A structure-activity study (SAR) was performed to establish the main physicochemical characteristics that most contribute to cytotoxicity. Finally, ex vivo permeation studies were performed to assess the suitability of the flavanones for topical administration. Results revealed that most of the studied flavanones and their respective PLGA NPs inhibited cell growth depending on the concentration; 1b should be highlighted. The descriptors of the energetic factor were those that played a more important role in cellular activity. PLGA NPs demonstrated their ability to penetrate ( of 17.84-118.29 µg) and be retained ( of 0.01-1.44 g/g/cm) in the skin and to exert their action for longer. The results of the study suggest that flavanones could offer many opportunities as a future anticancer topical adjuvant treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301461PMC
http://dx.doi.org/10.3390/pharmaceutics15061632DOI Listing

Publication Analysis

Top Keywords

plga nps
12
anticancer potential
8
potential natural
8
natural flavanone
8
flavanone derivatives
8
loaded biopolymeric
8
biopolymeric nanoparticles
8
vitro approaches
4
approaches explore
4
anticancer
4

Similar Publications

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF

Obesity-associated obstructive sleep apnea (OSA) highlights the need for effective therapies. Hypothalamic endoplasmic reticulum (ER) stress contributes to leptin resistance in obesity. Although hesperidin (HE) modulates ER stress and oxidative pathways, its low bioavailability limits clinical use, its role in OSA is unknown.

View Article and Find Full Text PDF

PLGA nanoparticles provide a safe delivery system for bee venom and melittin to alleviate their hepatotoxic effects in mice.

Toxicon

September 2025

Department of Toxicology and Forensic medicine, Faulty of Veterinary Medicine, Cairo University, Giza 11221, Egypt. Electronic address:

Bee venom and its principal peptide, melittin, are natural compounds with many therapeutic effects. They are also known for their hemolytic and cytotoxic properties that render their medical applications. Poly lactic-co-glycolic acid (PLGA) is a popular polymer used for different drug delivery.

View Article and Find Full Text PDF

A novel treatment for diabetic nephropathy: Folate receptor-targeted delivery of TLR4 siRNA via functionalized PLGA nanoparticles in streptozotocin-induced diabetic murine models.

Nanomedicine

September 2025

The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, People's Republic of China; Key laboratory of nephropathy, The S

Diabetic kidney disease (DKD), a prominent microvascular complication of diabetes mellitus and the leading cause of end-stage renal disease (ESRD), was addressed through a novel nanotherapeutic approach. This study engineered folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles (FA-PLGA NPs) for the folate receptor (FR)-targeted delivery of Toll-like receptor 4 small interfering RNA (TLR4 siRNA) to treat diabetic nephropathy (DN). In a streptozotocin-induced DN murine model, administration of FA-PLGA NPs/TLR4 siRNA significantly mitigated renal injury compared to untreated DN controls.

View Article and Find Full Text PDF

Aims: Nanoparticle-mediated drug delivery systems are being investigated for the controlled release of drugs to treat neurodegenerative diseases (ND). We aimed to investigate the effects of poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) containing different growth factors (GFs) on rat brain-derived neural stem cells (NSCs) in vitro differentiation, providing insights that may contribute to future approaches for treating Parkinson's disease.

Methods: Three different PLGA-NPs loaded with Brain-Derived Neurotrophic Factor (BDNF), Glial-Derived Neurotrophic Factor (GDNF), and Transforming Growth Factor beta 3 (TGF-β3) were developed and characterized in terms of size, zeta potential, encapsulation efficiency, and release profile.

View Article and Find Full Text PDF