Systematic Characterization of GATA Transcription Factors in and Functional Validation in Abiotic Stresses.

Plants (Basel)

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The in the family is an endangered tree species useful for its socio-economic and ecological benefits. Abiotic stresses (cold, heat, and drought stress), among other factors, affect its growth, development, and distribution. However, GATA transcription factors (TFs) respond to various abiotic stresses and play a significant role in plant acclimatization to abiotic stresses. To determine the function of GATA TFs in , we investigated the GATA genes in the genome of . In this study, a total of 18 GATA genes were identified, which were randomly distributed on 12 of the total 17 chromosomes. These GATA genes clustered together in four separate groups based on their phylogenetic relationships, gene structures, and domain conservation arrangements. Detailed interspecies phylogenetic analyses of the GATA gene family demonstrated a conservation of the GATAs and a probable diversification that prompted gene diversification in plant species. In addition, the LcGATA gene family was shown to be evolutionarily closer to that of , giving an insight into the possible LcGATA gene functions. Investigations of LcGATA gene duplication showed four gene duplicate pairs by the segmental duplication event, and these genes were a result of strong purified selection. Analysis of the -regulatory elements demonstrated a significant representation of the abiotic stress elements in the promoter regions of the LcGATA genes. Additional gene expressions through transcriptome and qPCR analyses revealed a significant upregulation of LcGATA17, and LcGATA18 in various stresses, including heat, cold, and drought stress in all time points analyzed. We concluded that the LcGATA genes play a pivotal role in regulating abiotic stress in . In summary, our results provide new insights into understanding of the LcGATA gene family and their regulatory functions during abiotic stresses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302256PMC
http://dx.doi.org/10.3390/plants12122349DOI Listing

Publication Analysis

Top Keywords

abiotic stresses
20
lcgata gene
16
gata genes
12
gene family
12
gene
9
gata transcription
8
transcription factors
8
drought stress
8
abiotic stress
8
lcgata genes
8

Similar Publications

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF

In Brief: Advanced maternal age (AMA) is associated with adverse pregnancy outcomes, particularly those associated with placental dysfunction. This study showed that in a mouse model of AMA, male but not female fetuses had increased placental apoptosis and lipid peroxidation, as well as increased mitochondrial content, suggesting that the placentas of male fetuses in AMA mothers adapt to be able to deliver sufficient energy to the fetus.

Abstract: Although advanced maternal age (AMA) increases the risk of fetal growth restriction (FGR) and stillbirth, the mechanisms leading to the placental dysfunction observed in AMA are unknown.

View Article and Find Full Text PDF