Intrinsic Coherence Length Anisotropy in Nickelates and Some Iron-Based Superconductors.

Materials (Basel)

M. N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskoy St., 620108 Ekaterinburg, Russia.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nickelate superconductors, RANiO (where R is a rare earth metal and A = Sr, Ca), experimentally discovered in 2019, exhibit many unexplained mysteries, such as the existence of a superconducting state with (up to 18 K) in thin films and yet absent in bulk materials. Another unexplained mystery of nickelates is their temperature-dependent upper critical field, Bc2(T), which can be nicely fitted to two-dimensional (2D) models; however, the deduced film thickness, dsc,GL, exceeds the physical film thickness, dsc, by a manifold. To address the latter, it should be noted that 2D models assume that dsc is less than the in-plane and out-of-plane ground-state coherence lengths, dsc<ξab(0) and dsc<ξc(0), respectively, and, in addition, that the inequality ξc(0)<ξab(0) satisfies. Analysis of the reported experimental Bc2(T) data showed that at least one of these conditions does not satisfy for RANiO films. This implies that nickelate films are not 2D superconductors, despite the superconducting state being observed only in thin films. Based on this, here we propose an analytical three-dimensional (3D) model for a global data fit of in-plane and out-of-plane Bc2(T) in nickelates. The model is based on a heuristic expression for temperature-dependent coherence length anisotropy: γξ(T)=γξ(0)1-1a×TTc, where a>1 is a unitless free-fitting parameter. The proposed expression for γξ(T), perhaps, has a much broader application because it has been successfully applied to bulk pnictide and chalcogenide superconductors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302216PMC
http://dx.doi.org/10.3390/ma16124367DOI Listing

Publication Analysis

Top Keywords

film thickness
8
intrinsic coherence
4
coherence length
4
length anisotropy
4
anisotropy nickelates
4
nickelates iron-based
4
iron-based superconductors
4
superconductors nickelate
4
nickelate superconductors
4
superconductors ranio
4

Similar Publications

Novel Precursor for h‑BN Synthesis on Ni(111) Substrates.

J Phys Chem C Nanomater Interfaces

September 2025

Leiden Insitute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, Netherlands.

In this study, we report the synthesis of single-crystalline h-BN on Ni(111) under ultrahigh vacuum (UHV) conditions using hexamethylborazine (HMB) as a nonclassical precursor. The novel use of HMB facilitates the diffusion of methyl groups into the bulk of Ni(111), playing a critical role in the achievement of high-quality crystalline h-BN layers. The synthesis is performed on a 2 mm-thick Ni(111) single crystal and on a 2-μm-thick Ni(111) thin film on sapphire to evaluate the feasibility of synthesizing h-BN on industrially relevant substrates.

View Article and Find Full Text PDF

Achieving high performance nanoscale photonic functionalities remains extraordinarily challenging when using naturally derived biomaterials. The ability to manipulate ultrathin films of structural proteins─combined with photolithographic control of their polymorphism─unlocks a compelling route toward engineering biopolymer-based photonic crystals with precisely defined photonic bandgaps and reconfigurable structural colors. In this work, we describe a robust, water-based fabrication process for silk/inorganic hybrid one-dimensional (1D) photonic crystals that overcomes many of the conventional difficulties in ensuring reproducibility, uniformity, and reliability at the nanoscale.

View Article and Find Full Text PDF

Characterization of skeletal muscle contraction using a flexible and wearable ultrasonic sensor.

Prog Mol Biol Transl Sci

September 2025

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada. Electronic address:

Monitoring skeletal muscle contraction provides valuable information about the muscle mechanical properties, which can be helpful in various biomedical applications. This chapter presents a single-element flexible and wearable ultrasonic sensor (WUS) developed by our research group and its application for continuously monitoring and characterizing skeletal muscle contraction. The WUS is made from a 110-µm thick polyvinylidene fluoride piezoelectric polymer film.

View Article and Find Full Text PDF

A potential replacement that alleviates the shortcomings of the dominant light absorber materials used in solar photovoltaics has been synthesized, and its microstructural, electronic structure, and optical properties have been investigated. KCuS crystals were synthesized by the carbonate method. Transmission electron microscopy (TEM) established [010] as the growth direction of the needle-like monoclinic crystals.

View Article and Find Full Text PDF

Micro-Strain Responsive Near-Infrared Mechanoluminescence for Potential Nondestructive Artificial Joint Stress Imaging.

Adv Mater

September 2025

Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.

Recently, joint replacement surgery is facing significant challenges of patient dissatisfaction and the need for revision procedures. In-situ monitoring of stress stability at the site of artificial joint replacement during postoperative evaluation is important. Mechanoluminescence (ML), a novel "force to light" conversion technology, may be used to monitor such bio-stress within tissues.

View Article and Find Full Text PDF