98%
921
2 minutes
20
Emerging data have suggested that circulating tumor DNA (ctDNA) can be a reliable biomarker for minimal residual disease (MRD) in CRC patients. Recent studies have shown that the ability to detect MRD using ctDNA assay after curative-intent surgery will change how to assess the recurrence risk and patient selection for adjuvant chemotherapy. We performed a meta-analysis of post-operative ctDNA in stage I-IV (oligometastatic) CRC patients after curative-intent resection. We included 23 studies representing 3568 patients with evaluable ctDNA in CRC patient post-curative-intent surgery. Data were extracted from each study to perform a meta-analysis using RevMan 5.4. software. Subsequent subgroup analysis was performed for stages I-III and oligometastatic stage IV CRC patients. Results showed that the pooled hazard ratio (HR) for recurrence-free survival (RFS) in post-surgical ctDNA-positive versus -negative patients in all stages was 7.27 (95% CI 5.49-9.62), < 0.00001. Subgroup analysis revealed pooled HRs of 8.14 (95% CI 5.60-11.82) and 4.83 (95% CI 3.64-6.39) for stages I-III and IV CRC, respectively. The pooled HR for RFS in post-adjuvant chemotherapy ctDNA-positive versus -negative patients in all stages was 10.59 (95% CI 5.59-20.06), < 0.00001. Circulating tumor DNA (ctDNA) analysis has revolutionized non-invasive cancer diagnostics and monitoring, with two primary forms of analysis emerging: tumor-informed techniques and tumor-agnostic or tumor-naive techniques. Tumor-informed methods involve the initial identification of somatic mutations in tumor tissue, followed by the targeted sequencing of plasma DNA using a personalized assay. In contrast, the tumor-agnostic approach performs ctDNA analysis without prior knowledge of the patient's tumor tissue molecular profile. This review highlights the distinctive features and implications of each approach. Tumor-informed techniques enable the precise monitoring of known tumor-specific mutations, leveraging the sensitivity and specificity of ctDNA detection. Conversely, the tumor-agnostic approach allows for a broader genetic and epigenetic analysis, potentially revealing novel alterations and enhancing our understanding of tumor heterogeneity. Both approaches have significant implications for personalized medicine and improved patient outcomes in the field of oncology. The subgroup analysis based on the ctDNA method showed pooled HRs of 8.66 (95% CI 6.38-11.75) and 3.76 (95% CI 2.58-5.48) for tumor-informed and tumor-agnostic, respectively. Our analysis emphasizes that post-operative ctDNA is a strong prognostic marker of RFS. Based on our results, ctDNA can be a significant and independent predictor of RFS. This real-time assessment of treatment benefits using ctDNA can be used as a surrogate endpoint for the development of novel drugs in the adjuvant setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298915 | PMC |
http://dx.doi.org/10.3390/ijms241210230 | DOI Listing |
J Immunother Precis Oncol
August 2025
The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
Introduction: Patients with advanced solid tumors may be considered for early phase clinical trials investigating the safety, tolerability, and dosing of experimental therapies. Optimizing participant selection is critical to maximize clinical benefit and meet trial endpoints with fewer participants. One in six participants does not meet routine life expectancy requirements (>3 months), highlighting the need for improved prognostication.
View Article and Find Full Text PDFBrain Commun
August 2025
Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8FJ, UK.
The cortex of the brain is covered by three meningeal layers: the dura, the arachnoid, and the pia mater. Substantial discoveries have been made demonstrating the structural and functional relationships between these layers, and with other neighbouring structures such as the skull. Importantly, improved understanding of the meningeal lymphatic network places the meninges at the nexus of a cross talk between the brain, peripheral immune system, and the skull bone marrow.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFJ Natl Cancer Inst
September 2025
Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.
Purpose: Early detection of HPV-associated oropharyngeal cancer (HPV+OPSCC), the most common HPV cancer in the United States, could reduce disease-related morbidity and mortality, yet currently, there are no early detection tests. Circulating tumor HPV DNA (ctHPVDNA) is a sensitive and specific biomarker for HPV+OPSCC at diagnosis. It is unknown if ctHPVDNA is detectable prior to diagnosis, and thus it's potential as an early detection test.
View Article and Find Full Text PDFMethods
September 2025
Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China. Electronic address:
Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.
View Article and Find Full Text PDF