Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Across the world, the seasonal disease influenza is a respiratory illness that impacts all age groups in many ways. Its symptoms are fever, chills, aches, pains, headaches, fatigue, cough, and weakness. Seasonal influenza can cause mild to severe illness and lead to death at times. The task of early detection of influenza is an important research area these days. Various studies show that machine learning techniques have attracted many researchers' attention to the early detection of influenza disease. In this paper, early detection of Influenza disease among all age groups is done using various machine learning techniques. Influenza Research Database and the Human Surveillance Records data sets are used. Data analysis is undertaken, and ensemble-based stacked algorithms are implemented on the whole data set. The performance of different models has been evaluated using different performance metrics. Overall, the study proposes efficient machine learning models that can be implemented to provide a cheaper and quicker diagnostic tool for detecting influenza.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199437 | PMC |
http://dx.doi.org/10.1007/s11042-023-15848-2 | DOI Listing |