98%
921
2 minutes
20
Biological tubular actuators show diverse deformations, which allow for sophisticated deformations with well-defined degrees of freedom (DOF). Nonetheless, synthetic active tubular soft actuators largely only exhibit few simple deformations with limited and undesignable DOF. Inspired by 3D fibrous architectures of tubular muscular hydrostats, we devised conceptually new helical-artificial fibrous muscle structured tubular soft actuators (HAFMS-TSAs) with locally tunable molecular orientations, materials, mechanics, and actuation via a modular fabrication platform using a programmable filament winding technique. Unprecedentedly, HAFMS-TSAs can be endowed with 11 different morphing modes through programmable regulation of their 3D helical fibrous architectures. We demonstrate a single "living" artificial plant rationally structured by HAFMS-TSAs exhibiting diverse photoresponsive behaviors that enable adaptive omnidirectional reorientation of its hierarchical 3D structures in the response to environmental irradiation, resembling morphing intelligence of living plants in reacting to changing environments. Our methodology would be significantly beneficial for developing sophisticated soft actuators with designable and tunable DOF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289666 | PMC |
http://dx.doi.org/10.1126/sciadv.adh3350 | DOI Listing |
Adv Mater
September 2025
Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Microrobots are expected to push the boundaries of robotics by enabling navigation in confined and cluttered environments due to their sub-centimeter scale. However, most microrobots perform best only in the specific conditions for which they are designed and require complete redesign and fabrication to adapt to new tasks and environments. Here, fully 3D-printed modular microrobots capable of performing a broad range of tasks across diverse environments are introduced.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.
View Article and Find Full Text PDFACS Omega
September 2025
Florida A&M University-Florida State University College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310-6046, United States.
This study presents a comprehensive analysis of the swelling behavior of poly-(ethylene glycol) (PEG)-based hydrogels of different molecular weights under various conditions. The rheological response and swelling kinetics of PEG hydrogels with molecular weight between cross-links ranging from 700 to 10 000 g/mol reveal the connection between architecture and material properties that are important for soft actuators. In addition to providing insight into the network structure and cross-linking density, rheological measurements find that the shear moduli of the networks increase with the degree of water swelling.
View Article and Find Full Text PDFIEEE Trans Med Robot Bionics
August 2025
Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92093, USA.
Endovascular surgeries generally rely on push-based catheters and guidewires, which require significant training to master and can still result in high stress being exerted on the anatomy, especially in tortuous paths. Because these procedures are so technically challenging to perform, many patients have limited access to high-quality treatment. Although various robotic systems have been developed to enhance navigation capabilities, they can also apply high stresses due to sliding against the vascular walls, impeding movement and raising the risk of vascular damage.
View Article and Find Full Text PDFChem Rev
September 2025
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea.
Self-regulating hydrogels represent the next generation in the development of soft materials with active, adaptive, autonomous, and intelligent behavior inspired by sophisticated biological systems. Nature provides exemplary demonstrations of such self-regulating behaviors, including muscle tissue's precise biochemical and mechanical feedback mechanisms, and coordinated cellular chemotaxis driven by dynamic biochemical signaling. Building upon these natural examples, self-regulating hydrogels are capable of spontaneously modulating their structural and functional states through integrated negative feedback loops.
View Article and Find Full Text PDF