BCAT1 controls embryonic neural stem cells proliferation and differentiation in the upper layer neurons.

Mol Brain

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The regulation of neural stem cell (NSC) proliferation and differentiation during brain development is a precisely controlled process, with the production of different neuronal subtypes governed by strict timelines. Glutamate is predominantly used as a neurotransmitter by the subtypes of neurons in the various layers of the cerebral cortex. The expression pattern of BCAT1, a gene involved in glutamate metabolism, in the different layers of neurons has yet to be fully understood. Using single-cell data, we have identified seven different states of NSCs and found that state 4 is closely associated with the development of projection neurons. By inferring the developmental trajectory of different neuronal subtypes from NSC subsets of this state, we discovered that BCAT1 is involved in the regulation of NSC proliferation and differentiation and is specifically highly expressed in layer II/III and IV neurons. Suppression of BCAT1 through shRNA resulted in a reduction in NSC proliferation and an abnormal development of layer II/III and IV neurons. These findings provide new insights into the role of BCAT1 in the regulation of NSC behavior and neuronal development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283284PMC
http://dx.doi.org/10.1186/s13041-023-01044-8DOI Listing

Publication Analysis

Top Keywords

proliferation differentiation
12
nsc proliferation
12
neural stem
8
neuronal subtypes
8
regulation nsc
8
layer ii/iii
8
ii/iii neurons
8
neurons
6
bcat1
5
nsc
5

Similar Publications

regulates early postnatal DPP4 preadipocyte pool expansion.

Genes Dev

September 2025

RU Adipocytes and Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany;

Adipose tissue is rapidly expanding early in life. Elucidating the queues facilitating this process will advance our understanding of metabolically healthy obesity. Using single-cell RNA sequencing, we identified compositional differences of prewean and adult murine subcutaneous adipose tissue.

View Article and Find Full Text PDF

Influence of oxidative stress on women's fertility: A model with a generational age Caputo's fractional derivative.

Biosystems

September 2025

IVIRMA Global Research Alliance, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; Rey Juan Carlos University, Department of Medical Specialties and Public Health, Edificio Departamental II. Av. de Atenas

Cellular aging associated with telomeric shortening plays an important role in female fertility. In addition to natural decline, due to the loss of telomeric repeats during cell division, other factors such oxidative stress (OS), accelerate telomere shortening by causing a dramatic loss of telomeric repeats. Thus, mathematical models to better understand the accelerated aging leading to infertility are lacking in the literature.

View Article and Find Full Text PDF

Leber's hereditary optic neuropathy (LHON), a mitochondrial disorder marked by central vision loss, exhibits incomplete penetrance and male predominance. Since there are no adequate models for understanding the rapid vision loss associated with LHON, we generated induced pluripotent stem cells (iPSCs) from LHON patients carrying the pathogenic m.3635G > A mutation and differentiated them into retinal pigment epithelium (RPE) cells.

View Article and Find Full Text PDF

Negative regulation of the IL-4/13-mediated Th2 immune response by microRNA-126b via targeting IL-4Rα1 in large yellow croaker (Larimichthys crocea).

Fish Shellfish Immunol

September 2025

College of Marine Sciences, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and

The closely related cytokines Interleukin-4 (IL-4) and IL-13 regulate the Th2 immune response by interacting with their specific receptor complexes. MicroRNAs (miRNAs) modulate various biological pathways through mechanisms that either repress mRNA translation or promote messenger RNA degradation. The miRNA miR-126b is implicated in fish embryonic development.

View Article and Find Full Text PDF

CgCREM Regulates Haemocyte Proliferation and Inflammatory Factor Expression in the Pacific Oyster Crassostrea gigas.

Fish Shellfish Immunol

September 2025

Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China; Liaoning Key Laboratory of Mar

The cAMP response element modulator (CREM) is a regulatory transcription factor downstream of cAMP signaling, functioning either as a transcriptional activator or repressor in regulating the proliferation and differentiation of immune cells. In the present study, CgCREM with a conserved pKID domain and a BRLZ domain was identified from Pacific oyster Crassostrea gigas. The mRNA transcripts of CgCREM were found to be highly expressed in embryonic stages, especially in the blastula and trochophore.

View Article and Find Full Text PDF