Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: The aim of this study is to determine the variation in Hounsfield values with single and multi-slice methods using in-house software on fan-beam computed tomography (FCT), linear accelerator (linac) cone-beam computed tomography (CBCT), and Icon-CBCT datasets acquired using Gammex and advanced electron density (AED) phantoms.

Materials And Methods: The AED phantom was scanned on a Toshiba computed tomography (CT) scanner, five linac-based CBCT X-ray volumetric imaging systems, and Leksell Gamma Knife Icon. The variation between single and multi-slice methods was assessed by comparing scans acquired using Gammex and AED phantoms. The variation in Hounsfield units (HUs) between seven different clinical protocols was assessed using the AED phantom. A CIRS Model 605 Radiosurgery Head Phantom (TED) phantom was scanned on all three imaging systems to assess the target dosimetric changes due to HU variation. An in-house software was developed in MATLAB to assess the HU statistics and the trend along the longitudinal axis.

Results: The FCT dataset showed a minimal variation (central slice ± 3 HU) in HU values along the long axis. A similar trend was also observed between the studied clinical protocols acquired on FCT. Variation among multiple linac CBCTs was insignificant. In the case of the water insert, a maximum HU variation of -7.23 ± 68.67 was observed for Linac 1 towards the inferior end of the phantom. All five linacs appeared to have a similar trend in terms of HU variation from the proximal to the distal end of the phantom, with a few outliers for Linac 5. Among three imaging modalities, the maximum variation was observed in gamma knife CBCTs, whereas FCT showed no appreciable deviation from the central value. In terms of dosimetric comparison, the mean dose in CT and Linac CBCT scans differed by <0.5 Gy, whereas at least a 1 Gy difference was observed between CT and gamma knife CBCT.

Conclusion: This study shows a minimal variation with FCT between single, volume-based, and multislice methods, and hence the current approach of determining the CT-electron density curve based on a single-slice method would be sufficient for producing a HU calibrations curve for treatment planning. However, CBCTs acquired on linac, and in particular, gamma knife systems, show noticeable variations along the long axis, which is likely to affect the dose calculations performed on CBCTs. It is highly recommended to assess the Hounsfield values on multiple slices before using the HU curve for dose calculations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277306PMC
http://dx.doi.org/10.4103/jmp.jmp_3_23DOI Listing

Publication Analysis

Top Keywords

computed tomography
16
imaging systems
12
variation
9
variation hounsfield
8
single multi-slice
8
multi-slice methods
8
in-house software
8
acquired gammex
8
aed phantom
8
phantom scanned
8

Similar Publications

Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.

View Article and Find Full Text PDF

Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.

View Article and Find Full Text PDF

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Evaluation of the usefulness of the masking on un-smoothed image method in Tl myocardial perfusion SPECT.

Radiol Phys Technol

September 2025

Department of Cardiovascular Internal Medicine, NHO Kagoshima Medical Center, 8-1, Shiroyamacho, Kagoshima, Kagoshima, 892-0853, Japan.

In Tl myocardial perfusion single-photon emission computed tomography (SPECT), gastric wall uptake can impact the inferior wall. This study aimed to evaluate the effectiveness and usefulness of the masking on un-smoothed image (MUS) method for Tl myocardial perfusion SPECT. A hemispherical gastric wall phantom was created to simulate the gastric fundus located closest to the myocardium, and the activity was enclosed to achieve an SPECT count ratio against the myocardium equivalent to that observed in clinical practice.

View Article and Find Full Text PDF

3D isotropic FastView MRI localizer allows reliable torsion measurements of the lower limb.

Eur Radiol Exp

September 2025

Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany.

Computed tomography (CT) and magnetic resonance imaging (MRI) are commonly used to assess femoral and tibial torsion. While CT offers high spatial resolution, it involves ionizing radiation. MRI avoids radiation but requires multiple sequences and extended acquisition time.

View Article and Find Full Text PDF