Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this study was to identify and validate new putative lead drug targets in drug-resistant mesial temporal lobe epilepsy (mTLE) starting from differentially expressed genes (DEGs) previously identified in mTLE in humans by transcriptome analysis. We identified consensus DEGs among two independent mTLE transcriptome datasets and assigned them status as "lead target" if they (1) were involved in neuronal excitability, (2) were new in mTLE, and (3) were druggable. For this, we created a consensus DEG network in STRING and annotated it with information from the DISEASES database and the Target Central Resource Database (TCRD). Next, we attempted to validate lead targets using qPCR, immunohistochemistry, and Western blot on hippocampal and temporal lobe neocortical tissue from mTLE patients and non-epilepsy controls, respectively. Here we created a robust, unbiased list of 113 consensus DEGs starting from two lists of 3040 and 5523 mTLE significant DEGs, respectively, and identified five lead targets. Next, we showed that CACNB3, a voltage-gated Ca channel subunit, was significantly regulated in mTLE at both mRNA and protein level. Considering the key role of Ca currents in regulating neuronal excitability, this suggested a role for CACNB3 in seizure generation. This is the first time changes in CACNB3 expression have been associated with drug-resistant epilepsy in humans, and since efficient therapeutic strategies for the treatment of drug-resistant mTLE are lacking, our finding might represent a step toward designing such new treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10471638PMC
http://dx.doi.org/10.1007/s12035-023-03426-4DOI Listing

Publication Analysis

Top Keywords

temporal lobe
12
voltage-gated channel
8
mesial temporal
8
lobe epilepsy
8
mtle
8
degs identified
8
consensus degs
8
neuronal excitability
8
lead targets
8
differential expression
4

Similar Publications

MRI Assessment of Radiation-Induced Delayed-Onset Microstructural Gray Matter Changes in Nasopharyngeal Carcinoma Patients.

J Magn Reson Imaging

September 2025

School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.

Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.

Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).

Study Type: Prospective, longitudinal.

View Article and Find Full Text PDF

Prognostic models for radiation-induced complications after radiotherapy in head and neck cancer patients.

Cochrane Database Syst Rev

September 2025

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.

Background: Radiotherapy is the mainstay of treatment for head and neck cancer (HNC) but may induce various side effects on surrounding normal tissues. To reach an optimal balance between tumour control and toxicity prevention, normal tissue complication probability (NTCP) models have been reported to predict the risk of radiation-induced side effects in patients with HNC. However, the quality of study design, conduct, and analysis (i.

View Article and Find Full Text PDF

Slapping automatism in epileptic seizures: a case series.

Front Hum Neurosci

August 2025

Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.

Background: Slapping automatism is a type of automatism observed during epileptic seizures, but its underlying electrophysiological mechanisms remain poorly understood. Stereo-electroencephalography (SEEG) provides a unique opportunity to investigate the associated cortical areas with epileptiform discharges during the slapping automatism.

Case Report: We report five cases of drug-resistant epilepsy in which SEEG recordings captured slapping automatism.

View Article and Find Full Text PDF

Brain network signatures of spatial memory in adolescents at risk for substance use.

Alcohol Clin Exp Res (Hoboken)

September 2025

Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, Massachusetts, USA.

Background: Examining youth before engagement in risky behaviors may help identify neurobiological signatures that prospectively predict susceptibility to initiating and escalating alcohol and other substance use. Given that frontal and medial temporal (e.g.

View Article and Find Full Text PDF

Racial stereotypes have been shown to bias the identification of innocuous objects, making objects like wallets or tools more likely to be identified as weapons when encountered in the presence of Black individuals. One mechanism that may contribute to these biased identifications is a transient perceptual distortion driven by racial stereotypes. Here we provide neuroimaging evidence that a bias in visual representation due to automatically activated racial stereotypes may be a mechanism underlying this phenomenon.

View Article and Find Full Text PDF