Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Streptococcus pneumoniae is an agent of otitis media, septicemia, and meningitis and remains the leading cause of community-acquired pneumonia regardless of vaccine use. Of the various strategies that S. pneumoniae takes to enhance its potential to colonize the human host, quorum sensing (QS) is an intercellular communication process that provides coordination of gene expression at a community level. Numerous putative QS systems are identifiable in the S. pneumoniae genome, but their gene-regulatory activities and contributions to fitness have yet to be fully evaluated. To contribute to assessing regulatory activities of paralogs present in the D39 genome, we conducted transcriptomic analysis of mutants of six QS regulators. Our results find evidence that at least four QS regulators impact the expression of a polycistronic operon (encompassing genes to ) that is directly controlled by the Rgg/SHP1518 QS system. As an approach to unravel the convergent regulation placed on the operon, we deployed transposon mutagenesis screening in search of upstream regulators of the Rgg/SHP1518 QS system. The screen identified two types of insertion mutants that result in increased activity of Rgg1518-dependent transcription, one type being where the transposon inserted into , an annotated endopeptidase, and the other type being insertions in , a pyruvate oxidase. We demonstrate that pneumococcal PepO degrades SHP1518 to prevent activation of Rgg/SHP1518 QS. Moreover, the glutamic acid residue in the conserved "HExxH" domain is indispensable for the catalytic function of PepO. Finally, we confirmed the metalloendopeptidase property of PepO, which requires zinc ions, but not other ions, to facilitate peptidyl hydrolysis. Streptococcus pneumoniae uses quorum sensing to communicate and regulate virulence. In our study, we focused on one Rgg quorum sensing system (Rgg/SHP1518) and found that multiple other Rgg regulators also control it. We further identified two enzymes that inhibit Rgg/SHP1518 signaling and revealed and validated one enzyme's mechanisms for breaking down quorum sensing signaling molecules. Our findings shed light on the complex regulatory network of quorum sensing in Streptococcus pneumoniae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367586PMC
http://dx.doi.org/10.1128/jb.00087-23DOI Listing

Publication Analysis

Top Keywords

quorum sensing
24
streptococcus pneumoniae
16
sensing streptococcus
8
rgg/shp1518 system
8
quorum
6
sensing
6
pneumoniae
6
regulators
5
rgg/shp1518
5
identification characterization
4

Similar Publications

Population-level bistability in quorum sensing.

mBio

September 2025

Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.

Quorum sensing (QS) is a widespread signaling mechanism in bacteria that coordinates collective behaviors according to population density. A foundational assumption in this field is that QS functions as a gene expression switch that synchronizes responses at the population level. While some studies indeed report homogeneous on/off transitions, others report heterogeneity at the cellular level, challenging the canonical view.

View Article and Find Full Text PDF

Antibacterial and antiviral properties of punicalagin (Review).

Med Int (Lond)

August 2025

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.

Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.

View Article and Find Full Text PDF

Thunb is endogenous to Southeast Asia and traditionally used for the treatment of bacterial and viral infections. Previous studies reported various pharmacological activities, including cytotoxic activity. The aim of this work was to identify phytoconstituents of the ethanolic extract of aerial parts using extensive 1D- and 2D-NMR analysis and HR-MS.

View Article and Find Full Text PDF

Combating the post-antibiotic era crisis: antimicrobial peptide/peptidomimetic-integrated combination therapies and delivery systems.

J Mater Chem B

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.

Globally, new antibiotic development lags behind the rapid evolution of antibiotic-resistant bacteria. Given the extensive research and development cycles, high costs, and risks associated with new pharmaceuticals, exploring alternatives to conventional antibiotics and enhancing their efficacy and safety is a promising strategy for addressing challenges in the post-antibiotic era. Previous studies have shown that antimicrobial peptides/peptidomimetics (AMPs) primarily use a membrane-disruption mechanism distinct from conventional antibiotics to exert bactericidal effects.

View Article and Find Full Text PDF

Bacillus drives functional states in synthetic plant root bacterial communities.

Genome Biol

September 2025

Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.

Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).

View Article and Find Full Text PDF