Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The performance of nanocrystal (NC) catalysts could be maximized by introducing rationally designed heterointerfaces formed by the facet- and spatio-specific modification with other materials of desired size and thickness. However, such heterointerfaces are limited in scope and synthetically challenging. Herein, we applied a wet chemistry method to tunably deposit Pd and Ni on the available surfaces of porous 2D-Pt nanodendrites (NDs). Using 2D silica nanoreactors to house the 2D-PtND, an 0.5-nm-thick epitaxial Pd or Ni layer (e-Pd or e-Ni) was exclusively formed on the flat {110} surface of 2D-Pt, while a non-epitaxial Pd or Ni layer (n-Pd or n-Ni) was typically deposited at the {111/100} edge in absence of nanoreactor. Notably, these differently located Pd/Pt and Ni/Pt heterointerfaces experienced distinct electronic effect to influence unequally in electrocatalytic synergy for hydrogen evolution reaction (HER). For instance, an enhanced H generation on the Pt{110} facet with 2D-2D interfaced e-Pd deposition and faster water dissociation on the edge-located n-Ni overpowered their facet-located counterparts in respective HER catalysis. Therefore, a feasible assembling of the valuable heterointerfaces in the optimal 2D n-Ni/e-Pd/Pt catalyst overcame the sluggish alkaline HER kinetics, with a catalytic activity 7.9 times higher than that of commercial Pt/C.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202307816DOI Listing

Publication Analysis

Top Keywords

heterointerfaces formed
8
2d-pt nanodendrites
8
hydrogen evolution
8
evolution reaction
8
harmonious heterointerfaces
4
formed 2d-pt
4
nanodendrites facet-respective
4
facet-respective stepwise
4
stepwise metal
4
metal deposition
4

Similar Publications

Electrochemical CO reduction reaction (CORR) has emerged as a key negative-emission technology, yet its industrial adoption hinges on cathode catalysts that deliver high selectivity and production rates at low cost. Herein, we reported a facile hydrothermal route to synthesize different scales of ZnOHF ultrathin nanowires with hybridized ZnO/ZnOHF heterointerfaces, where the 40 nm variant (NW-ZnOHF) showed a high FE of 93 % and a of -17.2 mA/cm at -1.

View Article and Find Full Text PDF

The limited activity and poor long-term stability of oxygen electrocatalysts remain major obstacles to the practical deployment of zinc-air batteries (ZABs). Herein, a heterostructure catalyst, FeNi-LDH@DACs, was constructed by anchoring ultrasmall FeNi layered double hydroxide (LDH) nanodots onto polyhedral FeNi dual-atomic catalysts (DACs), forming a "sesame-ball-like" architecture. This spatial arrangement enables interfacial coupling, where electron transfer from LDH to DACs modulates the d-band center of the FeNi atomic sites and adjusts the adsorption energies of oxygen intermediates.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) suffer from severe nonradiative recombination-induced photovoltage loss, limiting the device overall performance. To address this key issue, an efficient strategy via a dual-site anchoring bridge is developed to engineer the heterointerface between perovskite and PCBM electron transport layer. The resulting reinforced and homogeneous passivation by forming strong dual-site P─O─Pb covalent bonds, effectively decreases perovskite surface defect density.

View Article and Find Full Text PDF

TiCT-enhanced photo-thermoelectric performance of BiTe in scaffold for improved osteogenic potential.

J Colloid Interface Sci

August 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science

Photo-thermoelectric bismuth telluride (BiTe) generated electrical stimulation through photothermal-driven thermoelectric effect, offering promising potential for bone repair. Nevertheless, photo-thermoelectric conversion performance of BiTe was limited by low carrier mobility, high thermal conductivity, and rapid electron-hole pair recombination. To address this, BiTe@titanium carbide MXene (TiCT) heterojunction was constructed via electrostatic self-assembly, and subsequently incorporated heterojunction into poly-L-lactic acid scaffold fabricated by laser additive manufacturing.

View Article and Find Full Text PDF

As micro-nano power devices have evolved towards high frequency, high voltage, and a high level of integration, the issue of thermal resistance at heterointerfaces has become increasingly prominent, posing a key bottleneck that limits device performance and reliability. This paper presents a systematic review of the current state of research and future challenges related to interface thermal resistance in heterostructures within micro and nano power devices. First, based on phonon transport theory, we conducted an in-depth analysis of the heat transfer mechanisms at typical heterointerfaces, such as metal-semiconductor and semiconductor-semiconductor, and novel low-dimensional materials.

View Article and Find Full Text PDF