Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The application of manures leads to the contamination of agricultural soils with veterinary antibiotics (VAs). These might exert toxicity on the soil microbiota and threaten environmental quality, and public health. We obtained mechanistic insights about the impact of three VAs, namely, sulfamethoxazole (SMX), tiamulin (TIA) and tilmicosin (TLM), on the abundance of key soil microbial groups, antibiotic resistance genes (ARGs) and class I integron integrases (intl1). In a microcosm study, we repeatedly treated two soils (differing in pH and VA dissipation capacity) with the studied VAs, either directly or via fortified manure. This application scheme resulted in accelerated dissipation of TIA, but not of SMX, and accumulation of TLM. Potential nitrification rates (PNR), and the abundance of ammonia-oxidizing microorganism (AOM) were reduced by SMX and TIA, but not by TLM. VAs strongly impacted the total prokaryotic and AOM communities, whereas manure addition was the main determinant of the fungal and protist communities. SMX stimulated sulfonamide resistance, while manure stimulated ARGs and horizontal gene transfer. Correlations identified opportunistic pathogens like Clostridia, Burkholderia-Caballeronia-Paraburkholderia, and Nocardioides as potential ARG reservoirs in soil. Our results provide unprecedented evidence about the effects of understudied VAs on soil microbiota and highlight risks posed by VA-contaminated manures. ENVIRONMENTAL IMPLICATION: The dispersal of veterinary antibiotics (VAs) through soil manuring enhances antimicrobial resistance (AMR) development and poses a threat to the environment and the public health. We provide insights about the impact of selected VAs on their: (i) microbially-mediated dissipation in soil; (ii) ecotoxicity on the soil microbial communities; (iii) capacity to stimulate AMR. Our results (i) demonstrate the effects of VAs and their application-mode on the bacterial, fungal, and protistan communities, and on the soil ammonia oxidizers; (ii) describe natural attenuation processes against VA dispersal, (iii) depict potential soil microbial AMR reservoirs, essential for the development of risk assessment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164817DOI Listing

Publication Analysis

Top Keywords

soil microbial
16
soil
10
accelerated dissipation
8
dissipation soil
8
antimicrobial resistance
8
veterinary antibiotics
8
vas
8
antibiotics vas
8
soil microbiota
8
public health
8

Similar Publications

Effects of chicken manure-derived black soldier fly organic fertilizer on soil carbon and nitrogen cycling: insights from metagenomic and microbial network analysis.

Environ Res

September 2025

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address: cmm114@mail

Black soldier fly (BSF) organic fertilizer is known to enhance soil fertility and promote plant growth. However, its effects on soil carbon (C) and nitrogen (N) cycling remains unclear. In this study, we established a BSF chicken manure bioconversion system to produce BSF organic fertilizer and investigate its impacts on soil C and N cycling, as well as microbial ecological networks through metagenomic analysis.

View Article and Find Full Text PDF

Uptake characterization of soil arsenic species and its effects on nitrogen cycle in soybean (Glycine max (L.) Merrill) cultivation: A comparison with cadmium.

Ecotoxicol Environ Saf

September 2025

Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research In

This study aimed to elucidate the effects of arsenic species [As(III)/As(V)] and cadmium [Cd(II)] on nitrification and nitrogen fixation in soybean (Glycine max (L.) Merrill) cultivation, and to identify nitrogen cycle disruption mechanisms in realistic soil environments with a focus on soil-metal-plant-microbe interactions. We examined heavy metal(loid)s uptake in plant tissues, changes in nitrogen species in porewater, nitrogenase activity, the contents of essential trace metals (Mo and Fe) in nitrogenase, and nitrogen-related microbial communities.

View Article and Find Full Text PDF

The potential of Cupriavidus sp. DF5525 degrading high concentrations of p-dichlorobenzene.

J Hazard Mater

September 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

p-Dichlorobenzene (p-DCB), a persistent halogenated pollutant with regulatory thresholds of up to 200 mg/kg in industrial soils in China, poses significant environmental and health risks. Current bioremediation strategies are limited by poor microbial tolerance to high p-DCB concentrations (200-1000 mg/kg). Here, we report Cupriavidus sp.

View Article and Find Full Text PDF

Physiology combined with metabolomics reveal selenium acting as a mitigator for Perilla frutescens (L.) Britt. growth under oxytetracycline condition: by regulating photosynthesis, redox homeostasis and secondary metabolites.

Plant Physiol Biochem

September 2025

School of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China. Electronic address:

The accumulation of antibiotics in soil threatens agricultural ecosystems and human health. Oxytetracycline (OTC), a plant-absorbable antibiotic, generally exerts inhibitory effects on plant growth. Selenium (Se) plays a crucial role in safeguarding plants resistant to a variety of abiotic stresses.

View Article and Find Full Text PDF

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF