98%
921
2 minutes
20
Cassava's storage roots represent one of the most important sources of nutritional carbohydrates worldwide. Particularly, smallholder farmers in sub-Saharan Africa depend on this crop plant, where resilient and yield-improved varieties are of vital importance to support steadily increasing populations. Aided by a growing understanding of the plant's metabolism and physiology, targeted improvement concepts already led to visible gains in recent years. To expand our knowledge and to contribute to these successes, we investigated storage roots of eight cassava genotypes with differential dry matter content from three successive field trials for their proteomic and metabolic profiles. At large, the metabolic focus in storage roots transitioned from cellular growth processes toward carbohydrate and nitrogen storage with increasing dry matter content. This is reflected in higher abundance of proteins related to nucleotide synthesis, protein turnover, and vacuolar energization in low starch genotypes, while proteins involved in sugar conversion and glycolysis were more prevalent in high dry matter genotypes. This shift in metabolic orientation was underlined by a clear transition from oxidative- to substrate-level phosphorylation in high dry matter genotypes. Our analyses highlight metabolic patterns that are consistently and quantitatively associated with high dry matter accumulation in cassava storage roots, providing fundamental understanding of cassava's metabolism as well as a data resource for targeted genetic improvement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16357 | DOI Listing |
Terr Atmos Ocean Sci
August 2025
Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan 701, Taiwan (ROC).
Given the pressures on water resources caused by global climate change and human activities, the assessment and management of groundwater resources in mountainous region have become increasingly important. The central mountainous region of Taiwan, as one of the significant sources of groundwater recharge, plays a critical role in overall water resource management due to its groundwater storage capacity and recharge capability. Addressing the challenges of limited survey and observational data in mountainous groundwater assessments, this study uses the lumped parameter groundwater model AquiMod to analyze long-term groundwater level changes at 23 monitoring stations in mountainous areas of central Taiwan.
View Article and Find Full Text PDFPlant Biol (Stuttg)
September 2025
Department of Botany, University of Innsbruck, Innsbruck, Austria.
Shrubs are perennial, multi-stemmed woody plants whose adaptation to stress factors allows them to colonise extreme habitats, including high elevations. Accordingly, shrubs are one of the most important growth forms in mountain regions, but their hydraulic properties are poorly understood. We conducted a literature search on the water use strategies of mountain shrubs, focusing on their main hydraulic traits related to water uptake, transport and release, as well as hydraulic limitations in summer and winter.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, China.
Camellia chekiangoleosa is a significant oil-bearing tree species, known for its high oleic acid content and shorter reproductive cycle compared to traditional oil-tea plants. However, there are few studies on the molecular mechanism and compatibility of the interaction between oil-Camellia scion and rootstock, which poses certain challenges to the cultivation and promotion of oil-Camellia. This study systematically evaluates the effects of hetero-grafting Camellia chekiangoleosa scions onto divergent rootstocks (Camellia chekiangoleosa, Camellia oleifera, and Camellia yuhsienensis).
View Article and Find Full Text PDFFront Plant Sci
August 2025
State Key Laboratory of Nutrient Use and Management, National Agricultural Experimental Station for Soil Quality, Jinan, China, Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy
Waterlogging poses a significant global threat to agriculture by inducing ion toxicities (e.g. Fe², Mn², NH ) in roots due to soil redox changes.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
July 2025
Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China.
The analysis of carbon dynamics in old-growth forests helps us understand forest conservation, restoration, and regional carbon sequestration. There is still controversy over whether old-growth forests are carbon sources or sinks. Studying the carbon storage and dynamics of old-growth forests is of great significance for evaluating their carbon source and sink functions, as well as quantifying forest carbon fixation at the regional scale.
View Article and Find Full Text PDF