Effect of aeration/micro-aeration on lignocellulosic decomposition, maturity and seedling phytotoxicity during full-scale biogas residues composting.

Waste Manag

Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China. Electronic address: renl

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the accelerated construction of biogas plants, the amount of biogas residues are expanding. Composting has been widely implemented to deal with biogas residues. Aeration regulation is the main factor affecting the post-composting treatment of biogas residues as high-quality fertilizer or soil amendment. Therefore, this study aimed to investigate the impact of different aeration regulations on full-scale biogas residues compost maturity by controlling oxygen concentration under micro-aeration and aeration conditions. Results showed that micro-aerobic extended the thermophilic stage of 17 days at above 55 ℃ and facilitated the mineralization process of organic nitrogen into nitrate nitrogen to retain higher N nutrition levels compared to aerobic treatment. For biogas residues with high moisture, aeration should be regulated at different full-scale composting stages. Total organic carbon (TOC), NH-N, NO-N, total potassium (TK), total phosphorus (TP) and the germination index (GI) could be used to evaluate stabilization, fertilizer efficiency and phytotoxicity of compost with frequent monitoring times. However, seedling growth trials were still necessary in full-scale composting plants when changing of composting process or biogas residues feedstock.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2023.06.007DOI Listing

Publication Analysis

Top Keywords

biogas residues
28
biogas
8
full-scale biogas
8
treatment biogas
8
full-scale composting
8
residues
7
composting
5
aeration/micro-aeration lignocellulosic
4
lignocellulosic decomposition
4
decomposition maturity
4

Similar Publications

Temperature-dependent transformation of piggery biogas residue pyrolysis products: Balancing resource recovery and environmental safety.

Bioresour Technol

August 2025

South China Institute of Environmental Sciences, MEE, Guangzhou 510655 Guangdong, China; Key Laboratory of Water Environment Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:

With the rapid growth of large-scale livestock farming in China, the safe disposal and resource utilization of anaerobic biogas residue (BR) have become critical challenges. This study systematically investigated the temperature-dependent (400-700 °C) transformation of piggery biogas residue pyrolysis products (biochar, tar/wood vinegar, pyrolysis gases) and their environmental risks. Results show that pyrolysis temperature significantly affects product distribution and properties: At 600 °C, biochar exhibits the maximum specific surface area (38.

View Article and Find Full Text PDF

Agricultural and industrial residues are increasingly recognized as valuable resources for sustainable innovation, offering significant potential for biotechnological applications. By integrating waste valorization into production systems, this approach aims to mitigate environmental impacts and enhance economic value across various sectors. The findings underline the critical need for further research and policy support to scale these solutions, advancing global sustainability goals through innovative resource management.

View Article and Find Full Text PDF

Life-Cycle Emissions and Human Health Implications of Multi-Input, Multi-Output Biorefineries.

Environ Sci Technol

August 2025

Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

To meaningfully broaden the supply of fuels for the transportation sector, biofuel production must be scaled up and this requires a wider array of biomass feedstocks, including agricultural residues and organic waste. Rather than pursuing conversion of lignocellulosic biomass to fuels and anaerobic digestion of wastes as separate pathways, there are economic and environmental advantages associated with integrating these processes in a single facility. However, existing research rarely goes beyond carbon footprints in quantifying the effects of such a shift in bioenergy production.

View Article and Find Full Text PDF

and spp.: From Food Spoilage to Beneficial Food Applications.

Foods

August 2025

Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), Faculty of Veterinary, University of Zaragoza-CITA, Miguel Servet 177, 50013 Zaragoza, Spain.

The genera and comprise thermophilic, spore-forming bacteria. The extraordinary heat resistance of their spores, together with their ability to form biofilms and produce thermostable enzymes, makes them a relevant cause of spoilage in shelf-stable, heat-treated products like dairy and canned foods. However, these same biological traits offer valuable opportunities for the food industry.

View Article and Find Full Text PDF

The hydrothermal filtrate of antibiotic fermentation residue contains high levels of organic nitrogen, thereby increasing the risk of ammonia inhibition during anaerobic digestion processes. An upflow anaerobic sludge blanket (UASB) integrated with a side-stream membrane contactor (SSMC) with developed for simultaneous biogas production and nitrogen recovery. The methane conversion efficiency stabilized at 75 % ± 2 % during 290 days, and the ammonia nitrogen recovery efficiency achieved over 73 %.

View Article and Find Full Text PDF