Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy.

Nat Commun

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The solid-electrolyte interphase (SEI) plays crucial roles for the reversible operation of lithium metal batteries. However, fundamental understanding of the mechanisms of SEI formation and evolution is still limited. Herein, we develop a depth-sensitive plasmon-enhanced Raman spectroscopy (DS-PERS) method to enable in-situ and nondestructive characterization of the nanostructure and chemistry of SEI, based on synergistic enhancements of localized surface plasmons from nanostructured Cu, shell-isolated Au nanoparticles and Li deposits at different depths. We monitor the sequential formation of SEI in both ether-based and carbonate-based dual-salt electrolytes on a Cu current collector and then on freshly deposited Li, with dramatic chemical reconstruction. The molecular-level insights from the DS-PERS study unravel the profound influences of Li in modifying SEI formation and in turn the roles of SEI in regulating the Li-ion desolvation and the subsequent Li deposition at SEI-coupled interfaces. Last, we develop a cycling protocol that promotes a favorable direct SEI formation route, which significantly enhances the performance of anode-free Li metal batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272176PMC
http://dx.doi.org/10.1038/s41467-023-39192-zDOI Listing

Publication Analysis

Top Keywords

sei formation
12
nanostructure chemistry
8
solid-electrolyte interphase
8
depth-sensitive plasmon-enhanced
8
plasmon-enhanced raman
8
raman spectroscopy
8
metal batteries
8
sei
7
resolving nanostructure
4
chemistry solid-electrolyte
4

Similar Publications

Electrolyte-Driven Cu Substitution in MoSe: Synergy of an Inorganic-Rich Solid Electrolyte Interphase and Thermal Activation for Sodium-Ion Batteries.

ACS Nano

September 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.

View Article and Find Full Text PDF

Hard carbon is the most commercially viable anode material for sodium-ion batteries (SIBs), yet its application in ester-based electrolytes is hindered by sluggish interfacial ion diffusion and limited sodium nucleation kinetics. After comprehensive evaluation, an interfacial chemistry regulation strategy was proposed based on orbital hybridization between bismuth and electrolyte ions, which was realized through the introduction of ammonium bismuth citrate. The surface bismuth particles regulate the formation of a NaF-rich SEI through improved anion affinity.

View Article and Find Full Text PDF

Rational Defect and Fluorine Chemistry in Tin Oxide Enables Reversible Na Intercalation with a Stable NaF-Rich SEI Formation.

Small

September 2025

Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.

Significant efforts have been devoted to optimizing the morphology and synthesizing composite materials to activate SnO for sodium-ion batteries. However, challenges arising from its intrinsic crystal structure remain insufficiently addressed. This study aims to introduce both oxygen vacancies and fluorine ions into the SnO lattice, yielding a modified compound with a chemical composition of SnO£F.

View Article and Find Full Text PDF

The development of next-generation Lithium-ion batteries (LIBs) to meet the demands of advancing technology and energy storage requires focus on the formation of effective interphases on both the positive and negative electrodes. Different promising approaches to facilitate effective interphase formation are already known Out of these, the incorporation of film-forming electrolyte additives is a straight-forward strategy to achieve this goal. In the presented study, a bifunctional electrolyte additive, (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl thiophene-3-carboxylate composed of two functional motifs, vinylene carbonate (VC) and thiophene, is reported.

View Article and Find Full Text PDF

1,3,2-Dioxathiolane 2,2-dioxide additive in carbonate-based gel polymer electrolyte enables dual-Interface stabilization for high-performance long-cycling sodium metal batteries.

J Colloid Interface Sci

August 2025

Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China. Electronic address:

Sodium metal batteries (SMBs) are promising next-generation energy storage systems due to their exceptional theoretical capacity (1165 mAh g) and the widespread availability of sodium. However, heterogeneous sodium deposition triggers irregular solid electrolyte interphase (SEI) formation, intensifies parasitic interfacial reactions, and accelerates persistent SEI deterioration. This study introduces a molecular engineering approach for constructing a novel carbonate-derived gel polymer electrolyte (GPE) system, denoted as THEP (composed of trimethylolpropane trimethacrylate (TMPTMA), 1,6-hexanediol diacrylate (HDDA), ethyl methyl carbonate (EMC), and propylene carbonate (PC)), via in-situ thermal polymerization.

View Article and Find Full Text PDF