High performance of visible-light driven hydrogen production over graphdiyne (g-CH)/MOF S-scheme heterojunction.

Dalton Trans

School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Among carbon allotropes, 2D graphdiyne (GDY) possesses the merits of good ductility, strong conductivity and an adjustable energy band structure. In this study, a GDY/ZnCo-ZIF S-scheme heterojunction photocatalyst has been successfully prepared by a low-temperature mixing method. Using eosin as a photosensitizer and triethanolamine as a solvent, the hydrogen production of the GDY/ZnCo-ZIF-0.9 composite reaches 171.79 μmol, which is 6.67 and 13.5 times that of the GDY and ZnCo-ZIF materials, respectively. The apparent quantum efficiency of the GDY/ZnCo-ZIF-0.9 composite at 470 nm is 2.8%. The improved photocatalytic efficiency may be attributed to the creation of an S-scheme heterojunction structure that enables efficient separation of space charges. In addition, the EY-sensitized GDY/ZnCo-ZIF catalyst endows the GDY with a special structure to provide an abundance of electrons for the ZnCo-ZIF material, thus facilitating the photocatalytic reduction reaction to produce hydrogen. A novel perspective is presented in this study regarding the construction of an S-scheme heterojunction based on graphdiyne for efficient photocatalytic hydrogen generation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt01344hDOI Listing

Publication Analysis

Top Keywords

s-scheme heterojunction
16
hydrogen production
8
gdy/znco-zif-09 composite
8
high performance
4
performance visible-light
4
visible-light driven
4
hydrogen
4
driven hydrogen
4
production graphdiyne
4
graphdiyne g-ch/mof
4

Similar Publications

The persistent presence of Metronidazole (MTZ), a commonly used antibiotic, in water bodies is a serious environmental and health concern because of its genotoxic and carcinogenic potential. Here, we report an effective visible-light photocatalyst system comprising an S-scheme glycine-modified TiO/FeO heterojunction immobilized on chitosan-polyacrylonitrile nanofibers. The photocatalyst nanocomposite was synthesized through a sol-gel and ultrasonication process coupled with electrospinning-assisted immobilization.

View Article and Find Full Text PDF

Selective photoreduction of CO with HO to hydrocarbons is challenged by inadequate and uncontrollable electron and proton feeding. Herein, this limitation is overcome by integrating HO dissociation, CO reduction, and O evolution catalysts into a dual S-scheme heterojunction and regulating exposed facets of the heterojunction supports. In this design, H and OH species generated by HO dissociation on the NH-MIL-125 support transfer to the T-COF shell and FeO insert for CO reduction and O evolution, respectively.

View Article and Find Full Text PDF

Bimetallic Sulfide Attached to MnCdS Induces Electron Transfer to Form S-Scheme Heterojunction to Promote Efficient Photocatalytic Hydrogen Evolution.

Langmuir

September 2025

School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.

A simple solvothermal method was used in this paper. ZnCoS (ZCS) nanoparticles were smoothly synthesized by this method and loaded on the external surface of MnCd0S (MCS) to form an S-scheme heterojunction. A comparative evaluation was performed with two other single catalysts, and the compound catalyst MCS/ZCS achieved great gain in the process of catalytic action of H generated under sunlight.

View Article and Find Full Text PDF

Photocatalysis enabled by step-scheme (S-scheme) heterojunction has emerged as a promising strategy for addressing the global energy crisis and achieving carbon neutrality. However, mechanisms regulating the interfacial charge transfer dynamics of S-scheme heterojunctions remain elusive. Herein, the electron transfer mechanisms are elucidated for a model S-scheme heterojunction composed of cadmium sulfide and a covalent organic framework material using synchrotron-based in situ soft X-ray absorption spectroscopy, substantiating the well-established in situ irradiated X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability, severe charge-carrier recombination, and limited active sites. Heterojunctions have recently been widely constructed to improve light absorption, passivate surface for enhanced stability, and promote charge-carrier dynamics of MHPs. However, little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.

View Article and Find Full Text PDF