98%
921
2 minutes
20
Programmed death-ligand 1 (PD-L1) expression in terms of the tumor proportion score (TPS) is the main predictive biomarker approved for immunotherapy against lung nonsmall cell carcinoma. Although some studies have explored the associations between histology and PD-L1 expression in pulmonary adenocarcinoma, they have been limited in sample size and/or extent of examined histologic variables, which may have resulted in conflicting information. In this observational retrospective study, we identified primary and metastatic lung adenocarcinoma cases in the span of 5 years and tabulated the detailed histopathologic features, including pathological stage, tumor growth pattern, tumor grade, lymphovascular and pleural invasion, molecular alterations, and the associated PD-L1 expression for each case. Statistical analyses were performed to detect associations between PD-L1 and these features. Among 1658 cases, 643 were primary tumor resections, 751 were primary tumor biopsies, and 264 were metastatic site biopsies or resections. Higher TPS significantly correlated with high-grade growth patterns, grade 3 tumors, higher T and N stage, presence of lymphovascular invasion, and presence of MET and TP53 alterations, whereas lower TPS correlated with lower-grade tumors and presence of EGFR alterations. There was no difference in PD-L1 expression in matched primary and metastases, although higher TPS was observed in metastatic tumors due to the presence of high-grade patterns in these specimens. TPS showed a strong association with a histologic pattern. Higher-grade tumors had higher TPS, which is also associated with more aggressive histologic features. Tumor grade should be kept in mind when selecting cases and blocks for PD-L1 testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.modpat.2023.100245 | DOI Listing |
Front Immunol
September 2025
Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.
Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.
Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.
Front Immunol
September 2025
Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.
View Article and Find Full Text PDFAm J Transplant
September 2025
Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania
Achieving immune tolerance is a key goal in organ transplantation, as it eliminates the need for long-term immunosuppression. Regulatory B cells (Bregs) present a promising strategy for inducing tolerance. Our previous findings demonstrate that the adoptive transfer of ex vivo-expanded murine splenic B regulatory cells, referred to as TLR-Bregs (TLR9/TLR4 stimulation), induces tolerance to allografts.
View Article and Find Full Text PDFCell Rep Med
September 2025
Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. Electronic address:
The success of immune checkpoint inhibitors is limited by multiple factors, including poor T cell infiltration and function within tumors, partly due to a dense extracellular matrix (ECM). Here, we investigate modulating the ECM by targeting integrin α5β1, a major fibronectin-binding and organizing integrin, to improve immunotherapy outcomes. Use of a function-blocking murinized α5β1 antibody reduces fibronectin fibril formation, enhances CD8 T cell transendothelial migration, increases vascular permeability, and decreases vessel-associated collagen.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China. Electronic address:
Oncolytic viruses (OVs) represent a promising approach for cancer immunotherapy by inducing direct tumor lysis and stimulating antitumor immunity. However, tumor-intrinsic resistance remains a major barrier to their efficacy. In this study, we established an OV-resistant MC38 colon cancer model (MC38) and identified interferon regulatory factor 7 (IRF7), a key regulator of type I interferon signaling, as significantly upregulated in resistant cells.
View Article and Find Full Text PDF