Pilot-scale assessment reveals effects of anode type and orthophosphate in governing antimicrobial capacity of copper for Legionella pneumophila control.

Water Res

Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061. Electronic address:

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Copper (Cu) is sometimes applied as an antimicrobial for controlling Legionella in hot water plumbing systems, but its efficacy is inconsistent. Here we examined the effects of Cu (0 - 2 mg/L), orthophosphate corrosion inhibitor (0 or 3 mg/L as phosphate), and water heater anodes (aluminum, magnesium, and powered anodes) on both bulk water and biofilm-associated L. pneumophila in pilot-scale water heater systems. Soluble, but not total, Cu was a good predictor of antimicrobial capacity of Cu. Even after months of exposure to very high Cu levels (>1.2 mg/L) and low pH (<7), which increases solubility and enhances bioavailability of Cu, culturable L. pneumophila was only reduced by ∼1-log. Cu antimicrobial capacity was shown to be limited by various factors, including binding of Cu ions by aluminum hydroxide precipitates released from corrosion of aluminum anodes, higher pH due to magnesium anode corrosion, and high Cu tolerance of the outbreak-associated L. pneumophila strain that was inoculated into the systems. L. pneumophila numbers were also higher in several instances when Cu was dosed together with orthophosphate (e.g., with an Al anode), revealing at least one scenario where high levels of total Cu appeared to stimulate Legionella. The controlled, pilot-scale nature of this study provides new understanding of the limitations of Cu as an antimicrobial in real-world plumbing systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120178DOI Listing

Publication Analysis

Top Keywords

antimicrobial capacity
8
water heater
8
pilot-scale assessment
4
assessment reveals
4
reveals effects
4
effects anode
4
anode type
4
type orthophosphate
4
orthophosphate governing
4
governing antimicrobial
4

Similar Publications

Bioinspired Multifunctional Eutectogels for Skin-Like Flexible Strain Sensors with Potential Application in Deep-Learning Handwriting Recognition.

Langmuir

September 2025

Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.

Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.

View Article and Find Full Text PDF

Engineering and Functional Expression of the Type III Secretion System in : Enhancing Insecticidal Efficacy and Expanding T3SE Libraries.

J Agric Food Chem

September 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China.

Entomopathogenic nematode symbiotic bacteria (EPNB) enhance nematode insecticidal capacity through symbiosis. This study cloned the complete 32-kb type III secretion system (T3SS) gene cluster from TT01 using Red/ET recombineering and functionally expressed it in T3SS-deficient HN_xs01. Heterologous T3SS expression significantly enhanced HN_xs01 adhesion and invasion capabilities in CF-203 cells.

View Article and Find Full Text PDF

Unlabelled: Bovine respiratory disease (BRD) is the primary disease of cattle and is responsible for most of the antibiotic use in the beef industry, both for metaphylaxis and treatment. Infection prevention and targeted treatments would benefit from detecting and identifying bacterial pathogens and, ideally, assessing antibiotic sensitivity. Here, we report success refining targeted metagenomics by hybridization capture sequencing (CapSeq) to detect and genotype bacterial pathogens and genes for antibiotic resistance in BRD.

View Article and Find Full Text PDF

Background And Aim: Antibiotic resistance has spurred interest in alternative feed additives for poultry. Wood vinegar (WV), a by-product of plant pyrolysis, contains bioactive compounds with antioxidant and antimicrobial properties. This study aimed to evaluate the effects of WV supplementation through drinking water on the cecal microbial population, volatile fatty acid (VFA) concentrations, antioxidant enzyme activity, and apparent ileal nutrient digestibility in broiler chickens.

View Article and Find Full Text PDF

Communities of plasmids as strategies for antimicrobial resistance gene survival in wastewater treatment plant effluent.

NPJ Antimicrob Resist

September 2025

Antimicrobial Resistance & Microbiome Research Group, Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co, Kildare, Ireland.

Plasmids facilitate antimicrobial resistance (AMR) gene spread via horizontal gene transfer, yet the mobility of genes in wastewater treatment plant (WWTP) resistomes remains unclear. We sequenced 173 circularised plasmids transferred from WWTP effluent into Escherichia coli and characterised their genetic content. Multiple multidrug-resistant plasmids were identified, with a significant number of mega-plasmids (>100 kb).

View Article and Find Full Text PDF