98%
921
2 minutes
20
Harmful algal blooms events have been reported worldwide and during the last decades are occurred with increasing frequency and intensity due to the climate change and the high inputs of nutrients in freshwaters from anthropogenic activities. During blooms cyanobacteria release in water their toxic secondary metabolites, known as cyanotoxins, along with other bioactive metabolites. Due to the negative impacts of these compounds on aquatic ecosystems and public health, there is an urgent need to detect and identify known and unknown cyanobacterial metabolites in surface waters. In the frame of the present study, a method based on liquid chromatography - high resolution mass spectrometry (LC-HRMS) was developed to investigate the presence of cyanometabolites in bloom samples from Lake Karaoun, Lebanon. Data analysis was performed using Compound Discoverer software with related tools and databases in combination to the CyanoMetDB mass list for detection, identification and structural elucidation of the cyanobacterial metabolites. In the course of this study, 92 cyanometabolites were annotated including 51 cyanotoxins belonging to microcystins, 15 microginins, 10 aeruginosins, 6 cyclamides, 5 anabaenopeptins, a cyanopeptolin, the dipeptides radiosumin B and dehydroradiosumin, the planktoncyclin and a mycosporine-like amino acid. Out of them, 7 new cyanobacterial metabolites, the chlorinated MC-ClYR, [epoxyAdda]MC-YR, MC-LI, aeruginosin 638, aeruginosin 588, microginin 755C and microginin 727 were discovered. Moreover, the presence of anthropogenic contaminants was recorded indicating the pollution of the lake and emphasizing the need for assessment of the co-occurrence of cyanotoxins, other cyanobacterial metabolites and other compounds hazardous to the environment. Overall, results prove the suitability of the proposed approach for the detection of cyanobacterial metabolites in environmental samples but also highlight the necessity of spectral libraries for these compounds, considering the absence of their reference standards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.164725 | DOI Listing |
Arch Microbiol
September 2025
Department of Botany, Central Instrumentation Facility, Nehru Gram Bharati Deemed to University, Prayagraj, 221505, India.
This review study examines an innovative biotechnological strategy aimed at creating a specialized cyanobacterial ecosystem designed to produce high-quality biomass abundant in compounds that provide protection against solar radiation, specifically scytonemin and mycosporine-like amino acids (MAAs). The remarkable ability of cyanobacteria to produce biomass that is both sustainable and environmentally friendly has attracted considerable attention in recent years, largely due to its wide-ranging applications in various industries. However, a significant challenge remains: the concentrations of these beneficial metabolites within cyanobacteria are typically very low, rendering industrial-scale production economically unviable.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA.
Microcystis aeruginosa is a toxic cyanobacteria species that is often abundant during cyanobacterial harmful algal blooms (cyanoHABs) in freshwaters. This study examined how growth on different nitrogen substrates influences the exometabolome of toxic and non-toxic strains of M. aeruginosa.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Aristotle University of Thessaloniki, School of Biology, Department of Botany, GR-541 24 Thessaloniki, Greece.
Cyanobacteria produce a diverse array of bioactive secondary metabolites, encompassing both harmful and potentially beneficial compounds. This study evaluated the effects of five cyanobacterial strains with uncharacterized metabolomes, including the new species Komarekiella chia, Nodularia mediterranea, and Iphianassa zackieohae-on Lemna trisulca plant. Both short-term (exposure of plant to cyanobacterial extracts for 24 h) and long-term (2-week co-cultivation) experiments were conducted.
View Article and Find Full Text PDFArch Microbiol
August 2025
Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
Cyanobacteria interact with biota, including higher plants, through the secretion of metabolites, which provide nutrition or elicit immunity, thereby establishing beneficial linkages. However, the phytochemical diversity, in relation to their plant-growth promoting and biofertilizing roles is less understood. Towards this endeavour, the metabolite profiles of three cyanobacterial cultures-Anabaena laxa (C11), Nostoc carneum (BF2), and Anabaena doliolum (BF4)-were evaluated.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States.
Microcystins (MCs) are hepatotoxic cyclic peptides produced by cyanobacteria, with MC-RR being one of the most polar and commonly detected MC congeners in water collected during cyanobacterial harmful algal blooms (cHABs). Microguanidines (MGDs) are sulfated metabolites produced by sp. that have not been reported during Lake Erie cHABs.
View Article and Find Full Text PDF