98%
921
2 minutes
20
Over the last few years, among controlled-release delivery systems, multivesicular liposomes (MVLs) have attracted attention due to their unique benefits as a loco-regional drug delivery system. Considering the clinical limitations of the current treatment strategies for osteomyelitis, MVLs can be a suitable carrier for the local delivery of effective antibiotics. This study aimed to prepare vancomycin hydrochloride (VAN HL) loaded MVLs using the active loading method which to the best of our knowledge has not been previously reported. Empty MVLS were prepared by the double emulsion (w/o/w) method and VAN HL was loaded into the prepared liposomes by the ammonium gradient method. After full characterization, the release profile of VAN HL from MVLs was assessed at two different pH values (5.5 and 7.4), and compared with the release profile of the free drug and also passively loaded MVLs. antimicrobial activities were evaluated using the disc diffusion method. Our results demonstrated that the encapsulation efficiency was higher than 90% in the optimum actively loaded MVL. The free VAN HL was released within 6-8 h, while the passively loaded MVLs and the optimum actively loaded MVL formulation released the drug in 6 days and up to 19 days, respectively. The released drug showed effective antibacterial activity against osteomyelitis-causing pathogens. In conclusion, the prepared formulation offered the advantages of sustained-release properties, appropriate particle size as well as being composed of biocompatible materials, and thus could be a promising candidate for the loco-regional delivery of VAN HL and the management of osteomyelitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08982104.2023.2220805 | DOI Listing |
Colloids Surf B Biointerfaces
July 2025
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:
The therapeutic efficacy of intervertebral disc (IVD) infections treated with intravenous vancomycin (VCM) is often limited by inadequate blood supply to the IVD. In this study, we developed a localized and sustained-release drug delivery system for the intradiscal administration of VCM. First, VCM-loaded multivesicular liposomes (VCM-MVLs) were prepared using a two-step emulsification process, and we investigated the effects of the preparation process and formulation composition on the quality of the MVLs.
View Article and Find Full Text PDFNucleic Acids Res
February 2025
School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom.
Advances in sequencing technology have led to a dramatic increase in the number of single-cell transcriptomic datasets. In the field of parasitology, these datasets typically describe the gene expression patterns of a given parasite species at the single-cell level under experimental conditions, in specific hosts or tissues, or at different life cycle stages. However, while this wealth of available data represents a significant resource, analysing these datasets often requires expert computational skills, preventing a considerable proportion of the parasitology community from meaningfully integrating existing single-cell data into their work.
View Article and Find Full Text PDFJ Control Release
October 2023
College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China. Electronic address:
Photo-immunotherapy is a promising strategy for the treatment of malignancies; however, its efficacy is often limited by the low tumor immunogenicity and immunosuppressive tumor microenvironment (TME). TME is typically deficient in L-arginine (L-Arg), which negatively impacts T cell survival and function. To address this issue, we developed a novel drug delivery system based on the multi-vesicular liposomes (MVLs) loaded with photosensitizer indocyanine green (ICG) and L-Arg (R), named R-ICG@MVLs.
View Article and Find Full Text PDFLett Appl Microbiol
October 2024
Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran.
Biofilm-mediated osteomyelitis presents significant therapeutic challenges. Given the limitations of existing osteomyelitis treatment approaches, there is a distinct need to develop a localized drug delivery system that is biocompatible, biodegradable, and capable of controlled antibiotic release. Multivesicular liposomes (MVLs), characterized by their non-concentric vesicular structure, distinct composition, and enhanced stability, serve as the system for a robust sustained-release drug delivery platform.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2024
Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Cixi Biomedical Research Institute of Wenzhou Medical University, China. Electronic address:
Oxidative stress has long been known as a pathogenic factor of ulcerative colitis. Superoxide dismutase (SOD) has been demonstrated to mitigate gut mucosal injury via combating oxidative stress. Herein, we developed SOD-loaded multivesicular liposomes (S-MVLs) as sustained-release depot for ulcerative colitis treatment.
View Article and Find Full Text PDF