98%
921
2 minutes
20
Mitochondrial ATP production in ventricular cardiomyocytes must be continually adjusted to rapidly replenish the ATP consumed by the working heart. Two systems are known to be critical in this regulation: mitochondrial matrix Ca ([Ca]) and blood flow that is tuned by local cardiomyocyte metabolic signaling. However, these two regulatory systems do not fully account for the physiological range of ATP consumption observed. We report here on the identity, location, and signaling cascade of a third regulatory system -- CO/bicarbonate. CO is generated in the mitochondrial matrix as a metabolic waste product of the oxidation of nutrients. It is a lipid soluble gas that rapidly permeates the inner mitochondrial membrane and produces bicarbonate in a reaction accelerated by carbonic anhydrase. The bicarbonate level is tracked physiologically by a bicarbonate-activated soluble adenylyl cyclase (sAC). Using structural Airyscan super-resolution imaging and functional measurements we find that sAC is primarily inside the mitochondria of ventricular cardiomyocytes where it generates cAMP when activated by bicarbonate. Our data strongly suggest that ATP production in these mitochondria is regulated by this cAMP signaling cascade operating within the inter-membrane space by activating local EPAC1 (xchange rotein directly ctivated by AMP) which turns on Rap1 (Ras-related protein-1). Thus, mitochondrial ATP production is increased by bicarbonate-triggered sAC-signaling through Rap1. Additional evidence is presented indicating that the cAMP signaling itself does not occur directly in the matrix. We also show that this third signaling process involving bicarbonate and sAC activates the mitochondrial ATP production machinery by working independently of, yet in conjunction with, [Ca]-dependent ATP production to meet the energy needs of cellular activity in both health and disease. We propose that the bicarbonate and calcium signaling arms function in a resonant or complementary manner to match mitochondrial ATP production to the full range of energy consumption in ventricular cardiomyocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284600 | PMC |
http://dx.doi.org/10.7554/eLife.84204 | DOI Listing |
PLoS One
September 2025
Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.
View Article and Find Full Text PDFProc Biol Sci
September 2025
Department of Biology, Evolutionary Ecology and Infection Biology, Lund University, SE-223 62, Lund, Sweden.
Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.
View Article and Find Full Text PDFBone
September 2025
Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, 594-1101, Japan. Electronic address:
Hypophosphatasia (HPP) is caused by inactivating variants of ALPL, the gene encoding tissue non-specific alkaline phosphatase (TNSALP). In order to deepen our understanding of the pathogenic mechanisms of HPP, we herein generated ALPL-knockout (KO) human induced pluripotent stem (iPS) cells by applying CRISPR/Cas9-mediated gene deletion to an iPS clone derived from a healthy subject. We analyzed two ALPL-KO clones, one ALPL-hetero KO clone, and a control clone isogenic except for ALPL.
View Article and Find Full Text PDFInt J Food Microbiol
September 2025
College of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:
This study comprehensively evaluated the antimicrobial efficacy and mechanisms of ε-polylysine (ε-PL) against Yersinia enterocolitica (Y. enterocolitica) contamination in pre-prepared meat products. Surveillance data from retail pork and beef samples collected in Xi'an, China (May 2024 to April 2025) revealed a 50.
View Article and Find Full Text PDF