98%
921
2 minutes
20
The formation mechanism of laser-induced periodic surface structures (LIPSS) has been a key to high-resolution sub-diffraction lithography or high-efficiency large-area nanotexturing. We show the evolution of LIPSS formation from a nanohole seed structure to high-spatial-frequency LIPSS by using a tightly focused and rectangular-shaped laser beam with different shape-polarization orientations. Formation of LIPSS based on light intensity distribution without invoking any long-range electromagnetic modes achieved quantitative match between modeling and experiment. Our results clearly show the entire step-like and deterministic process of LIPSS evolution based on experimental data and numerical simulations, revealing the dominant structural near-field enhancement on the ripple formation. A rectangular-shaped beam with an aspect ratio of 7:3 was used to break the symmetry of a circularly shaped focus. By azimuthally rotating the orientation of the focal spot and the polarization, it is possible to visualize the far-field effect for the initial seed structure formation and the competition between the far and near fields in the subsequent structure evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.487323 | DOI Listing |
Phys Med Biol
September 2025
Zhejiang University, Zijingang Campus of Zhejiang University,Yuhangtang Road No.866,Zhejiang Province, China 310058, Hangzhou, Zhejiang, 310058, CHINA.
Transcranial ultrasound research has garnered significant attention due to its non-invasive nature, absence of ionizing radiation, and portability, making it advantageous for both imaging and therapy. A critical aspect of advancing transcranial research lies in understanding the ultrasound transmission performance of the human skull. However, inherent variations in skull shape, physical parameters, and age-related changes pose challenges for comparative studies.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.
This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.
This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.
View Article and Find Full Text PDFBackground And Aims: Olive (Olea europaea L. subsp. europaea) is one of the most widespread woody crops in the Mediterranean Basin (MB) existing in two forms, namely the wild (or oleaster) and the cultivated olive (varieties).
View Article and Find Full Text PDFMikrochim Acta
September 2025
Teaching & Research Department of Common Course, Shenyang Sport University, Shenyang, 110115, China.
A surface enhanced Raman scattering (SERS)-based sensing platform is devised integrating a TMB redox system for rapid dopamine detection. Gold nanobipyramids (Au NBPs), synthesized via the heat-mediated seed-mediated growth method, possess dual functionality of peroxidase-like activity and SERS activity. This enables them to catalyze the oxidation of TMB and simultaneously amplify the Raman signal of the oxidized TMB product (oxTMB).
View Article and Find Full Text PDF