98%
921
2 minutes
20
The transport, distribution, and mixing of microfluidics often require additional instruments, such as pumps and valves, which are not feasible when operated in point-of-care (POC) settings. Here, we present a simple microfluidic pathogen detection system known as Rotation-Chip that transfers the reagents between wells by manually rotating two concentric layers without using external instruments. The Rotation-Chip is fabricated by a simple computer numerical control (CNC) machining process and is capable of carrying out 60 multiplexed reactions with a simple 30 or 60° rotation. Leveraging superhydrophobic coating, a high fluid transport efficiency of 92.78% is achieved without observable leaking. Integrated with an intracellular fluorescence assay, an on-chip detection limit of 1.8 × 10 CFU/mL is achieved for ampicillin-resistant , which is similar to our off-chip results. We also develop a computer vision method to automatically distinguish positive and negative samples on the chip, showing 100% accuracy. Our Rotation-Chip is simple, low-cost, high-throughput, and can display test results with a single chip image, making it ideal for various multiplexing POC applications in resource-limited settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c05131 | DOI Listing |
ACS Appl Mater Interfaces
June 2023
Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States.
The transport, distribution, and mixing of microfluidics often require additional instruments, such as pumps and valves, which are not feasible when operated in point-of-care (POC) settings. Here, we present a simple microfluidic pathogen detection system known as Rotation-Chip that transfers the reagents between wells by manually rotating two concentric layers without using external instruments. The Rotation-Chip is fabricated by a simple computer numerical control (CNC) machining process and is capable of carrying out 60 multiplexed reactions with a simple 30 or 60° rotation.
View Article and Find Full Text PDF