98%
921
2 minutes
20
Ethnopharmacological Relevance: Compound Kushen injection (CKI) is a representative medication of Chinese herbal injection and is often used in the adjuvant treatment of nasopharyngeal carcinoma (NPC), but its antitumor mechanism is poorly understood.
Aim Of The Study: To preliminarily elucidate the effects and possible mechanisms of CKI on NPC.
Methods: In this work, we explored the possible molecular mechanisms of CKI against NPC by using network pharmacology and molecular docking. In addition, proteomics was used to explore the localization and quantitative information of protein in NPC C666-1 cells after the intervention of CKI, and enrichment analysis was used to obtain the potential targets and pathways. Finally, the effect and the core targets of CKI in the intervention of NPC were explored in vitro experiments.
Results: Network pharmacology analysis identified three active components of CKI and 13 key targets. Molecular docking analysis showed that TNF, PTEN, CCND1, MAPK3, IL6, HIF1A, MYC had high affinity with corresponding components. Then the key pathway, cell cycle and the core targets MYC, CCND1, and P15 related to the key pathway were obtained. The results of in vitro experiments showed that CKI could inhibit the proliferation, migration, and invasion of NPC 5-8F cells and C666-1 cells, induce apoptosis of C666-1 cells, and arrest cell cycle G0/G1 phase. In addition, RT-qPCR and western blot showed that the expression of P15 was up-regulated and E2F4, E2F5, c-Myc, CCND1, and P107 was down-regulated in 5-8F cells and C666-1 cells intervened by CKI.
Conclusion: The key pathway, cell cycle and the corresponding core targets MYC, CCND1, and P15 were obtained from network pharmacology, molecular docking, and proteomics. CKI could inhibit the proliferation, migration, and invasion of NPC cells, induce apoptosis of C666-1 cells. Especially CKI may arrest cell cycle G0/G1 phase through regulating targets MYC/P15/CCND1 of cell cycle pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2023.116702 | DOI Listing |
Nat Metab
September 2025
Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.
View Article and Find Full Text PDFLeukemia
September 2025
University Children's Hospital Zurich, Pediatric Oncology and Children's Research Center, Zurich, Switzerland.
Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.
View Article and Find Full Text PDFLeukemia
September 2025
I.R.C.C.S Santa Lucia Foundation, Via del Fosso di Fiorano, Rome, Italy.
At present there is no metabolic characterization of acute promyelocytic leukemia (APL). Pathognomonic of APL, PML::RARα fusion protein rewires metabolic pathways to feed anabolic tumor cell's growth. All-trans retinoic acid (ATRA) and arsenic trioxide (ATO)-based therapies render APL the most curable subtype of AML, yet approximately 1% of cases are resistant and 5% relapse.
View Article and Find Full Text PDFeNeuro
September 2025
Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL35294 and.
The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.
View Article and Find Full Text PDFGenome Res
September 2025
College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China;
Poultry egg production is shaped by the intertwined action of multiple physiological systems, greatly magnifying the complexity of its underlying genetic regulation. Although multitissue mapping of regulatory variants offers a powerful route to untangle this complexity, comprehensive data sets in ducks remain scarce. Meanwhile, the contributions of peripheral systems beyond neuroendocrine regulation on poultry egg production are still largely unexplored.
View Article and Find Full Text PDF