98%
921
2 minutes
20
Managing the continuous and fast-growing volume of information, the progress in the Internet-of-Things, and the evolution from digitalization to networking are huge technological chores. Si-based integrated chips face increasing demands as they strive to meet these challenges. However, there is growing recognition that information processing and computing based on molecules performing logic operations may play a decisive role in shaping the future of the computer industry. Molecular logic gates are molecular counterparts of electronic devices that, instead of exclusively by electrical signals, can be stimulated by diverse chemical or physical input signals that produce optical outputs according to a well-defined logical transfer function. Several materials have been applied for molecular logic, however, the Ln-based ones appear to be a commendable choice, as they can respond to both chemical and physical stimuli, presenting unique photophysical properties that make them quite popular for photonics applications. Here we critically review illustrative molecular logic systems based on Ln ions and discuss their potential for integration in future molecular photonic-electronic hybrid logic computing systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cc01827j | DOI Listing |
Luminescence
September 2025
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2025
Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile. Electronic address:
The development of multifunctional fluorescent organic materials capable of selective ion detection, subcellular targeting, and logical operations is a burgeoning area in chemical biology and materials science. Herein, we report the design and development of a novel acylhydrazone based fluorescent ligand (HSN·Cl), which exhibits a distinct "turn-on" emission response toward Zn ions and a subsequent "turn-off" response in the presence of sulfide ions (S). The molecular design incorporates structural elements that facilitate the ESIPT feature, conferring the probe with unique photophysical properties.
View Article and Find Full Text PDFmSphere
September 2025
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Control of intracellular pathogens is a critical element of host defense. Defining the molecular mechanisms by which the host restricts or eliminates these pathogens may inform the development of novel immunotherapeutics and antimicrobial strategies, particularly in the face of rising antibiotic resistance. In parallel, understanding how pathogens subvert these immune responses may yield new approaches to disrupt virulence rather than viability.
View Article and Find Full Text PDFAsian J Psychiatr
September 2025
National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Traditional Chinese Medicine Re
Background: Amnestic mild cognitive impairment (aMCI) is characterized by marked episodic memory decline. The hippocampus is essential for episodic memory, and integration of information within its subregions is central to this process. This study examined how alterations in hippocampal subregional network relate to episodic memory impairment in aMCI.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
Membrane receptor recognition is a specific biotargeting strategy for disease diagnosis and treatment, but it suffers from insufficient receptor expression levels. Hydrophobic interaction-based membrane anchoring strategy allows high anchoring density, but it lacks specificity. In this study, we present a DNA nanocage-based artificial receptor generator (DNARG) that combines the advantages of high specificity of receptor recognition and high density of hydrophobic membrane anchoring.
View Article and Find Full Text PDF