Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exposure to high light intensity (HL) and cold treatment (CT) induces reddish pigmentation in , an aquatic fern. Nevertheless, how these conditions, alone or in combination, influence growth and pigment synthesis remains to be fully elucidated. Likewise, the regulatory network underpinning the accumulation of flavonoids in ferns is still unclear. Here, we grew under HL and/or CT conditions for 20 days and evaluated the biomass doubling time, relative growth rate, photosynthetic and non-photosynthetic pigment contents, and photosynthetic efficiency by chlorophyll fluorescence measurements. Furthermore, from the genome, we mined the homologs of , , and genes, which form the MBW flavonoid regulatory complex in higher plants, to investigate their expression by qRT-PCR. We report that optimizes photosynthesis at lower light intensities, regardless of the temperature. In addition, we show that CT does not severely hamper growth, although it causes the onset of photoinhibition. Coupling CT with HL stimulates the accumulation of flavonoids, which likely prevents irreversible photoinhibition-induced damage. Although our data do not support the formation of MBW complexes, we identified candidate and regulators of flavonoids. Overall, the present findings are of fundamental and pragmatic relevance to 's biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218715PMC
http://dx.doi.org/10.3390/ijms24108554DOI Listing

Publication Analysis

Top Keywords

high light
8
light intensity
8
accumulation flavonoids
8
impact high
4
intensity low
4
low temperature
4
growth
4
temperature growth
4
growth phenylpropanoid
4
phenylpropanoid profile
4

Similar Publications

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

High-Pressure X‑ray Diffraction Study of Scheelite-Type Perrhenates.

J Phys Chem C Nanomater Interfaces

September 2025

Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, 46100 Burjassot, Valencia Spain.

The effects of pressure on the crystal structure of scheelite-type perrhenates were studied using synchrotron powder X-ray diffraction and density-functional theory. At ambient conditions, the studied materials AgReO, KReO, and RbReO, exhibit a tetragonal scheelite-type crystal structure described by space group 4/. Under compression, a transition from scheelite-to-M'-fergusonite (space group 2/) was observed at 1.

View Article and Find Full Text PDF

Photochemical synthesis of silver nanoprisms via green LED irradiation and evaluation of SERS activity.

Beilstein J Nanotechnol

August 2025

Nanotechnology Lab, Research Laboratories of Saigon Hi-Tech Park, Lot I3, N2 Street, Tang Nhon Phu Ward, Ho Chi Minh City 70000, Vietnam.

Silver nanoprisms (AgNPrs) are promising candidates for surface-enhanced Raman scattering (SERS) due to their strong localized surface plasmon resonance and sharp tip geometry. In this study, AgNPrs were synthesized through a photochemical method by irradiating spherical silver nanoparticle seeds with 10 W green light-emitting diodes (LEDs; 520 ± 20 nm) for various periods of time up to 72 h. The growth mechanism was investigated through ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy analyses, confirming the gradual transformation of spherical seeds into AgNPrs.

View Article and Find Full Text PDF

Plasmonic nanoparticles boost low-current perovskite LEDs governed by photon recycling effects.

RSC Adv

September 2025

Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain

Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics.

View Article and Find Full Text PDF

Flexible photonic contactless human-machine interface based on visible-blind near-infrared organic photodetectors.

Natl Sci Rev

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.

Contactless human-machine interfaces (C-HMIs) are revolutionizing artificial intelligence (AI)-driven domains, yet face application limitations due to narrow sensing ranges, environmental fragility, and structural rigidity. To address these obstacles, we developed a flexible photonic C-HMI (Flex-PCI) using flexible visible-blind near-infrared organic photodetectors. In addition to its unprecedented performance across key metrics, including broad detection range (0.

View Article and Find Full Text PDF