98%
921
2 minutes
20
Implant-associated infection is a major threat affecting the success of orthopedic surgeries. Although various materials scavenge bacteria by generating reactive oxygen species (ROS), the intrinsic inability of ROS to distinguish bacteria from cells notably limits the therapeutic effects. Here, we found that the arginine carbon dots (Arg-CDs) that were transformed from arginine exhibited supreme antibacterial and osteoinductive activity. We further designed the Schiff base bond between Arg-CDs and aldehyde hyaluronic acid/gelatin methacryloyl (HG) hydrogel to release Arg-CDs in response to the acidic bone injury microenvironment. The free Arg-CDs could selectively kill bacteria by generating excessive ROS. Furthermore, the Arg-CD-loaded HG composite hydrogel showed excellent osteoinductive activity through inducing the M2 polarization of macrophages by up-regulating interleukin-10 () expression. Together, our findings revealed that transformation of the arginine into zero-dimensional Arg-CDs could endow the material with exceptional antibacterial and osteoinductive activity, favoring the regeneration of infectious bone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219602 | PMC |
http://dx.doi.org/10.1126/sciadv.adf8645 | DOI Listing |
Regen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
ACS Appl Mater Interfaces
September 2025
Department of Pediatric Dentistry (Department of Preventive Dentistry), School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China.
Guided bone regeneration (GBR) is a prominent focus in biomedical materials research, yet few studies address practical clinical needs. GBR membranes must fulfill the "PASS" principles to be effective in surgery, but existing membranes often fall short in balancing antibacterial activity, controlled degradation, osteoinductive potential, and mechanical support. In this study, we employed laser powder bed fusion (LPBF) to fabricate a porous WE43 magnesium alloy scaffold suitable for large alveolar bone defects.
View Article and Find Full Text PDFJ Nanobiotechnology
September 2025
Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China.
Irregular alveolar bone defects pose persistent clinical challenges due to their complex morphology and the lack of biomaterials that simultaneously provide structural integrity, biocompatibility, and dynamic osteoinductive potential. Herein, we report a fiber-reinforced, dual-network hydrogel system (OHADN fiber@Yoda1 hydrogel) engineered to recapitulate mechanobiological cues for enhanced bone regeneration. This injectable hydrogel integrates oxidized hyaluronic acid (OHA) crosslinked with Yoda1-loaded PLGA-collagen fiber fragments and stabilized via catechol-Fe³⁺ coordination, forming a robust and self-healing structure.
View Article and Find Full Text PDFJ Biol Eng
September 2025
Stem Cell Research Center, Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.
In this study, nanofibrous scaffolds composed of Polycaprolactone/Collagen (PCL/COL) infused with FeO/Lanthanum/SiO nanocomposite were developed. FeO and La-doped FeO nanoparticles were synthesized using a straightforward co-precipitation method. Silica extracted from Ulmus leaves via green synthesis was used to coat the FeO-La nanocomposite.
View Article and Find Full Text PDFInt J Biol Macromol
August 2025
Cell Signalling and Nanobiotechnology Laboratory -UFMG, Brazil; Repair and Nanomaterials Laboratory (LAREN) and Multiuser Laboratory for Morphofunctional Analyses (LAMOF) - UFSJ, Brazil. Electronic address:
Collagen has been widely used for graft production and functionalized with various nanomaterials to impart chemical, physical, and bioactive properties that mimic natural bone characteristics, including the ability to generate of electrical charges. Barium titanate nanoparticles (BTNP) are particularly promising due to their piezoelectric properties. In this study, we evaluated the osteoinducing capacity of BTNP and developed an osteomimetic biocomposite composed of collagen and BTNP.
View Article and Find Full Text PDF