A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microarray Chip and Method for Simultaneous and Highly Consistent Electroporation of Multiple Cells of Different Sizes. | LitMetric

Microarray Chip and Method for Simultaneous and Highly Consistent Electroporation of Multiple Cells of Different Sizes.

Anal Chem

Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell electroporation is an important cell manipulation technology to artificially transfer specific extracellular components into cells. However, the consistency of substance transport during the electroporation process is still an issue due to the wide size distribution of the natural cells. In this study, a cell electroporation microfluidic chip based on a microtrap array is proposed. The microtrap structure was optimized for single-cell capture and electric field focusing. The effects of the cell size on the cell electroporation in the microchip were investigated through simulation and experiment methods using the giant unilamellar vesicle as the simplified cell model, and a numerical model of a uniform electric field was used as a comparison. Compared with the uniform electric field, a lower threshold electric field is required to induce electroporation and produces a higher transmembrane voltage on the cell under a specific electric field in the microchip, showing an improvement in cell viability and electroporation efficiency. The larger perforated area produced on the cells in the microchip under a specific electric field allows a higher substance transfer efficiency, and the electroporation results are less affected by the cell size, which is beneficial for improving substance transfer consistency. Furthermore, the relative perforation area increases with the decrease of the cell diameter in the microchip, which is exactly opposite to that in a uniform electric field. By manipulating the electric field applied to the microtrap individually, a consistent proportion of substance transfer during electroporation of cells with different sizes can be achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c00528DOI Listing

Publication Analysis

Top Keywords

electric field
32
cell electroporation
12
uniform electric
12
substance transfer
12
cell
10
electroporation
9
cells sizes
8
electroporation cell
8
electric
8
field
8

Similar Publications