98%
921
2 minutes
20
The development of eco-friendly solvent-processed organic solar cells (OSCs) suitable for industrial-scale production should be now considered the imperative research. Herein, asymmetric 3-fluoropyridine (FPy) unit is used to control the aggregation and fibril network of polymer blends. Notably, terpolymer PM6(FPy = 0.2) incorporating 20% FPy in a well-known donor polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PM6) can reduce the regioregularity of the polymer backbone and endow them with much-enhanced solubility in eco-friendly solvents. Accordingly, the excellent adaptability for fabricating versatile devices based on PM6(FPy = 0.2) by toluene processing is demonstrated. The resulting OSCs exhibit a high power conversion efficiency (PCE) of 16.1% (17.0% by processed with chloroform) and low batch-to-batch variation. Moreover, by controlling the donor-to-acceptor weight ratio at 0.5:1.0 and 0.25:1.0, semi-transparent OSCs (ST-OSCs) yield significant light utilization efficiencies of 3.61% and 3.67%, respectively. For large-area (1.0 cm ) indoor OSC (I-OSC), a high PCE of 20.6% is achieved with an appropriate energy loss of 0.61 eV under a warm white light-emitting diode (3,000 K) with the illumination of 958 lux. Finally, the long-term stability of the devices is evaluated by investigating their structure-performance-stability relationship. This work provides an effective approach to realizing eco-friendly, efficient, and stable OSCs/ST-OSCs/I-OSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202301803 | DOI Listing |
J Phys Chem B
September 2025
Chemistry Division, Code 6176, US Naval Research Laboratory, Washington, D.C. 20375, United States.
Amyloid materials are formed from the aggregation of single proteins, yet contain polymorphisms where bulk properties are defined by a composition of multiple fibril types. Though desirable as a sustainable material, little is known about how various fibril types survive at high temperatures or in nonpolar solvents due to their highly similar molecular and nanoscale features. Here, we demonstrate that in situ two-dimensional infrared spectroscopy (2DIR), when paired with nanoscale microscopy, can determine the transition temperature of amyloid subpopulations without the use of labels.
View Article and Find Full Text PDFSmall
September 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by cognitive decline and the accumulation of amyloid-β (Aβ) plaques, with current treatments offering only limited efficacy. Targeted photo-oxygenation of Aβ using small-molecule photosensitizers has emerged as a promising strategy to modulate amyloid aggregation and mitigate associated toxicity. In this work, the rational design and synthesis of donor-engineered, benzimidazole-functionalized aggregation-induced emission (AIE) photosensitizer with optimized photophysical and morphological properties for multimodal theranostic applications in AD is analyzed and reported.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia; Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, 4 Tikhoretsky ave., 194064, St. Petersburg, Russia. Electronic address:
Growing evidence links gut microbiota to neurodegenerative diseases, yet direct molecular interactions between bacterial and host amyloid proteins remain incompletely understood. Bacterial amyloids represent an understudied yet potentially critical component of gut-brain communication in neurodegeneration. Here, we provide the first investigation of whether amyloids formed by outer membrane proteins (OMPs) of enterobacteria can modulate neurodegeneration-associated protein aggregation.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Chemistry, University of California, Irvine, California, United States of America.
Anti-Aβ antibodies are important tools for identifying structural features of aggregates of the Aβ peptide and are used in many aspects of Alzheimer's disease (AD) research. Our laboratory recently reported the generation of a polyclonal antibody, pAb2AT-L, that is moderately selective for oligomeric Aβ over monomeric and fibrillar Aβ and recognizes the diffuse peripheries of Aβ plaques in AD brain tissue but does not recognize the dense fibrillar plaque cores. This antibody was generated against 2AT-L, a structurally defined Aβ oligomer mimic composed of three Aβ-derived β-hairpins arranged in a triangular fashion and covalently stabilized with three disulfide bonds.
View Article and Find Full Text PDFFront Neurosci
August 2025
Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India.
Amyloid-β (Aβ) is implicated in the pathophysiology of Alzheimer's disease (AD) and plays a significant role in neuronal degeneration. Aβ in solution is essential during the initial stages of developing lead compounds that influence Aβ fibrillation. The tendency of the Aβ peptide to misfold in solution is correlated with the etiology of AD.
View Article and Find Full Text PDF