Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We demonstrate an integrated source of frequency-entangled photon pairs on a silicon photonics chip. The emitter has a coincidence-to-accidental ratio exceeding 10. We prove entanglement by showing two-photon frequency interference with a visibility of 94.6% ± 1.1%. This result opens the possibility of on-chip integration of frequency-bin sources with modulators and the other active and passive devices available in the silicon photonics platform.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.471241DOI Listing

Publication Analysis

Top Keywords

silicon photonics
8
silicon source
4
source frequency-bin
4
frequency-bin entangled
4
entangled photons
4
photons demonstrate
4
demonstrate integrated
4
integrated source
4
source frequency-entangled
4
frequency-entangled photon
4

Similar Publications

Amorphous silicon resistors enable smaller pixels in photovoltaic retinal prosthesis.

J Neural Eng

September 2025

Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, California, 94305, UNITED STATES.

Clinical trials of the photovoltaic subretinal prosthesis PRIMA demonstrated feasibility of prosthetic central vision with resolution matching its 100 μm pixel width. To improve prosthetic acuity further, pixel size should be decreased. However, there are multiple challenges, one of which is related to accommodating a compact shunt resistor within each pixel that discharges the electrodes between stimulation pulses and helps increase the contrast of the electric field pattern.

View Article and Find Full Text PDF

Enhanced Bendability and Viscoelastic behavior in High-quality 2H-SiC@SiO2 Nanowires.

Nanotechnology

September 2025

State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry and Chemical Engineering, Sun Yat-Sen University, No 135, XinGangXi Road, Guangzhou 510275, guangzhou, 510275, CHINA.

Silicon carbide nanowires (SiC NWs) combine the benefits of bulk SiC materials with the properties of low-dimensional nanomaterials. They are known for their excellent mechanical strength and durability, which are critical for their potential applications in high-stress environments and micro-nano functional systems. Here, the mechanical properties and deformation mechanisms of 2H-SiC NWs with rare defects in the [0001] orientation are reported.

View Article and Find Full Text PDF

Scanning probe microscopy (SPM) is a powerful technique for mapping nanoscale surface properties through tip-sample interactions. Thermal scanning-probe lithography (tSPL) is an advanced SPM variant that uses a silicon tip on a heated cantilever to sculpt and measure the topography of polymer films with nanometer precision. The surfaces produced by tSPL-smooth topographic landscapes-allow mathematically defined contours to be fabricated on the nanoscale, enabling sophisticated functionalities for photonic, electronic, chemical and biological technologies.

View Article and Find Full Text PDF

On-chip near-infrared gas sensing based on slow light mode multiplexing in photonic crystal waveguides.

Lab Chip

September 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Photonic crystal slow light waveguides present a breakthrough in the manipulation of optical signals and enhancing the interaction between light and matter. In particular, two-dimensional (2D) photonic crystal waveguides (PCWs) on silicon photonic chips hold promise in improving the sensitivity of on-chip gas sensors. However, the development of the gas sensors based on 2D PCWs suffers from a high propagation loss and a narrow slow light bandwidth.

View Article and Find Full Text PDF

Composite nano copper carrier combining cuproptosis and photodynamic therapy for spatiotemporal synergistic anti-tumor therapy.

Biomater Sci

September 2025

Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei,

Cuproptosis is a copper-dependent programmed cell death triggered by mitochondrial dysfunction, which offers significant anti-tumor potential but requires tumor-specific copper delivery to avoid systemic toxicity. Here, we developed a synergistic nanoplatform (CuO@SiO-Ce6, CSC) integrating cuproptosis induction with photodynamic therapy (PDT). A cuprous oxide (CuO) core was encapsulated in silicon dioxide and covalently linked to the photosensitizer Ce6.

View Article and Find Full Text PDF