98%
921
2 minutes
20
We evaluated the effects of a -based direct-fed microbial () on total in vitro gas production, dry matter (), neutral detergent fiber (), and starch disappearance of different feedstuffs and total mixed rations () in three different experiments. In experiment 1, six single fiber-based feedstuffs were evaluated: alfalfa hay, buffalo grass, beet pulp, eragrostis hay, oat hay, and smutsvinger grass. Experimental treatments were control (with no probiotic inoculation; ) or incubation of a probiotic mixture containing and (3.2 × 10 CFU/g; DFM). The calculation of DFM dose under in vitro conditions was based on the assumption of a rumen capacity of 70 liter and the dose of 3 g of the DFM mixture/head/d (9.6 × 10 CFU). Total in vitro gas production, DM, and NDF disappearance were evaluated at 24- and 48 h posttreatment incubation. Mean treatment effects were observed at 24- and 48 h gas production ( < 0.0001), as DFM incubation increased in vitro gas production by 5.0% and 6.5%, respectively. For nutrient digestibility, mean DM digestibility was increased at 48 h ( = 0.05), whereas mean NDF digestibility increased at both timepoints by incubating DFM in vitro ( ≤ 0.02). In experiment 2, nine commercial dairy TMR were collected and evaluated for the same variables and treatments described in experiment 1, with the additional analysis of starch digestibility at 7 h post in vitro incubation. The only difference was the concentration of the DFM included, being representative for a dosage of 8.8 × 10 CFU/head/d. In vitro gas production was increased only at 48 h due to DFM incubation ( = 0.05), whereas DM and NDF digestibility were improved at 24 and 48 h ( ≤ 0.02). No treatment effects were observed on in vitro starch digestibility ( = 0.31). In experiment 3, a combined analysis of DM and NDF digestibility was performed by using quality values (NDF and crude protein or CP) of 16 substrates. Regardless of CP and NDF levels of the substrates, DFM improved in vitro 24 and 48 h DM and NDF digestibility ( ≤ 0.03). In summary, incubating a -based DFM ( and BOVACILLUS) improved mean in vitro gas production, DM, and NDF digestibility of single feedstuffs and commercial dairy TMR, highlighting the potential of this combination of spp. to improve nutrient utilization, mainly fiber.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199785 | PMC |
http://dx.doi.org/10.1093/tas/txad044 | DOI Listing |
Pharmacoeconomics
September 2025
Department of Pharmacy, Uppsala University, Box 580, 751 23, Uppsala, Sweden.
Background: Immune checkpoint inhibitors (ICIs) are clinically beneficial but associated with high costs that represent a growing challenge for healthcare budgets and may affect affordability, especially in resource-limited settings. Moreover, the healthcare sector is a significant source of greenhouse gas emissions, and medication-related waste-such as that from vial-based therapies-has been identified as a contributing factor. Alternative dosing strategies could reduce the environmental and financial impact of ICI therapy while maintaining clinical safety and efficacy.
View Article and Find Full Text PDFInorg Chem
September 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
The photocatalytic reduction of carbon dioxide (CO) to chemicals holds significant importance for mitigating the current energy crisis. Rational design of catalytic centers within well-defined structures can effectively enhance the reaction activity and selectivity. In this study, we constructed interrupted zeolitic boron imidazolate frameworks (BIFs) featuring unsaturated coordination at the central Co ion.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Low molecular weight amines promote sulfate (SO and HSO) formation through acid-base reactions, contributing to fine particulate matter (PM). Heterogeneous ozonation converts nontoxic amine salts into highly toxic products, yet the ozonation activation mechanism is unclear. This work reveals a sulfate-dominant ozonation mechanism of amine salts in fine PM by combining advanced mass spectrometry and ab initio calculation methods.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
This work presents a gas-phase experimental study on the reduction of NO (nitrogen dioxide) to HONO (nitrous acid) by two atmospherically significant volatile organic compounds (VOCs), namely, glycolaldehyde (Gla) and hydroxyacetone (HAc), under a simulated tropospheric condition. FTIR spectroscopic probing reveals that HONO is the only gaseous reduced product of NO in each reaction. The measured data indicate that the reactions in both cases occur in a 2 : 1 stoichiometry with respect to NO and Gla/HAc.
View Article and Find Full Text PDFChemistry
September 2025
Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 20006
A novel sulfinamide reagent was developed that enables the one-step installation of sulfinamides through palladium-catalyzed coupling with aryl iodides. This method offers distinct advantages, including the use of readily available starting materials and broad substrate compatibility. Moreover, the strategy was successfully extended to the synthesis of complex functional molecules.
View Article and Find Full Text PDF