Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Topical delivery to treat dermatological disease is constrained by low skin permeability to most drugs due to the stratum corneum barrier. STAR particles containing microneedle protrusions can be topically applied on the skin to create micropores that dramatically increase skin permeability, even to water-soluble compounds and macromolecules. This study addresses the tolerability, acceptability, and reproducibility of STAR particles rubbed on the skin at multiple pressures and after multiple applications to human subjects. One-time STAR particle application at pressures between 40 and 80 kPa showed that skin microporation and erythema directly correlated with increased pressure, and 83% of subjects reported STAR particles to be comfortable at all pressures. Repeated application of STAR particles for 10 consecutive days at 80 kPa showed that skin microporation (~0.5% of skin area), erythema (low-to-moderate), and comfort with self-administration (75%) were similar over the course of the study. Comfort of sensations associated with STAR particles increased from 58% to 71% during the study, and familiarity with STAR particles increased from 12.5% to 50% of subjects reporting STAR particle application not feeling different from other skin products. This study demonstrates that topically applied STAR particles were well tolerated and highly acceptable after application at various pressures and repeated daily use. These findings further suggest that STAR particles offer a safe and reliable platform to enhance cutaneous drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189432PMC
http://dx.doi.org/10.1002/btm2.10524DOI Listing

Publication Analysis

Top Keywords

star particles
36
star
11
particles
9
tolerability acceptability
8
acceptability reproducibility
8
human subjects
8
skin
8
skin permeability
8
topically applied
8
star particle
8

Similar Publications

First synergistic application of nanocarrier-loaded metaflumizone and parasitic wasps: A high-efficiency green pest control strategy.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, PR China. Electronic address:

The improper use of chemical pesticides threatens ecosystems and human health, highlighting the need for sustainable alternatives. Nano-pesticides and biological control agents offer a solution, and their combination can reduce pesticide usage and improve pest control efficacy. This study utilized a star polycation (SPc) to prepare a metaflumizone nano-pesticide and combined it with the egg parasitoid (Telenomus remus) for synergistic pest management.

View Article and Find Full Text PDF

Directed Structural Evolution of Nickel Nanoparticles into Atomically Dispersed Sites for Efficient CO Electroreduction.

Small

September 2025

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China.

Electrochemical CO reduction (CORR) to carbon monoxide (CO) offers a sustainable pathway for carbon utilization, yet challenges remain in terms of improving selectivity and activity. Herein, we report a Ni/NC catalyst synthesized via a milling - pyrolysis method, in which Ni particles anchored on nitrogen-doped carbon (NC) are electrochemically activated under an Ar atmosphere, leading to their structural evolution into single-atom Ni sites. After activation in Ar atmosphere, the current density nearly doubles (from ≈30 to ≈60 mA cm), and concurrently, the Faradaic efficiency of CO stays at ∼90% with the potential set to -0.

View Article and Find Full Text PDF

There has been ongoing interest in the fabrication of silver-iron oxide composite nanostructures due to their effectiveness in antimicrobial, catalytic, and sensing applications. However, traditional processes involve multiple steps and harsh conditions, making them time-consuming and energy-intensive. A focused laser beam is used as an alternative tool to fabricate fluorescent silver-iron oxide composite nanostructures.

View Article and Find Full Text PDF

CO electroreduction is limited by linear scaling relationships that couple the stabilities of key intermediates (*COOH, *CHO) to CO adsorption, placing pure Cu catalysts at a volcano-plot ceiling of activity and selectivity. Here, we harness the compositional variety of nanosized AgAuCuPdPt high-entropy-alloy (HEA) particles to break these constraints. We trained an ultralight linear-regression surrogate (MAE ≈ 0.

View Article and Find Full Text PDF

Polymeric and Polymer-Functionalized Drug Delivery Vectors: From Molecular Architecture and Elasticity to Cellular Uptake.

Polymers (Basel)

August 2025

Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.

Polymers and polymer composites offer versatile possibilities for engineering the physico-chemical properties of materials on micro- and macroscopic scales. This review provides an overview of polymeric and polymer-decorated particles that can serve as drug-delivery vectors: linear polymers, star polymers, diblock-copolymer micelles, polymer-grafted nanoparticles, polymersomes, stealth liposomes, microgels, and biomolecular condensates. The physico-chemical interactions between the delivery vectors and biological cells range from chemical interactions on the molecular scale to deformation energies on the particle scale.

View Article and Find Full Text PDF