Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. Here, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster of PwMS that share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active prodromal period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid (CSF) and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically- or radiologically-isolated neuroinflammatory syndromes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187343PMC
http://dx.doi.org/10.1101/2023.05.01.23288943DOI Listing

Publication Analysis

Top Keywords

autoantibody signature
8
multiple sclerosis
8
predictive autoantibody
4
signature multiple
4
sclerosis cells
4
cells implicated
4
implicated multiple
4
sclerosis pathophysiology
4
pathophysiology predictive
4
predictive diagnostic
4

Similar Publications

Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.

Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.

View Article and Find Full Text PDF

Objective: Approximately 80% of patients with myasthenia gravis (MG) have autoantibodies against acetylcholine receptor, and clinical characteristics may vary between early-onset (symptom onset age <50 years) and late-onset MG (EOMG and LOMG), but the pathophysiological differences between EOMG and LOMG are not well established.

Methods: We performed an exploratory in-depth proteomics analysis examining 768 inflammatory proteins utilizing the baseline serum samples from the BeatMG study (NCT02110706). We performed pathway enrichment analysis to assess the pathways involved in LOMG.

View Article and Find Full Text PDF

Blood purification using immunoadsorbent columns is a therapeutic strategy for removing pathogenic autoantibodies in autoimmune diseases. Currently available columns have limitations: Trp/Phe columns offer cost-effectiveness and sterilizability, but lack antigen specificity and have limited capacity to remove diverse pathogenic autoantibodies; whereas Protein A/peptide/anti-human IgG columns target all antibodies, regardless of pathogenicity, limiting specificity, and often require sterile production due to low stability under sterilization conditions, except for peptide ligands. Full-length autoantigen-immobilized immunoadsorbent columns have great potential to specifically adsorb targeted autoantibodies, because autoantibodies recognize diverse epitopes that vary among individuals.

View Article and Find Full Text PDF

Beta-2-Glycoprotein I is the main target for pathogenic antiphospholipid syndrome autoantibodies. It can adopt several conformations, including an O-shape and two more linear J- and S-shapes. The existence of the O-shape is debated, and doubt remains pertaining to the pathogenic impact of each shape.

View Article and Find Full Text PDF

Accurately measuring circulating proinsulin proteoforms is crucial for clinical investigation of diabetes, but was previously not feasible owing to limited assay specificity/sensitivity. Here we devised a highly sensitive LC-MS-based strategy to quantify intact proinsulin, des-31,32 and des-64,65 proinsulin, and C-peptide in circulation. The method involves: (i) quantitative, robust affinity capture using an optimized antibody cocktail, eliminating the severe quantitative bias across multiple proteoforms typically introduced when using a single antibody; (ii) Lys-C digestion producing unique signature peptides for each proteoform, and (iii) trapping-nano-LC coupled with FAIMS/dCV-MS for an ultrasensitive analysis.

View Article and Find Full Text PDF