Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Searching for key nodes and edges in a network is a long-standing problem. Recently cycle structure in a network has received more attention. Is it possible to propose a ranking algorithm for cycle importance? We address the problem of identifying the key cycles of a network. First, we provide a more concrete definition of importance-in terms of Fiedler value (the second smallest Laplacian eigenvalue). Key cycles are those that contribute most substantially to the dynamical behavior of the network. Second, by comparing the sensitivity of Fiedler value to different cycles, a neat index for ranking cycles is provided. Numerical examples are given to show the effectiveness of this method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.187402 | DOI Listing |