Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The future of molecular-level therapy, efficient medical diagnosis, and drug delivery relies on the effective theragnostic function which can be achieved by the synergistic effect of fluorescent carbon dots (FCDs) liposomes (L) and nanoliposomes. FCDs act as the excipient navigation agent while liposomes play the role of the problem-solving agent, thus the term "theragnostic" would describe the effect of LFCDs properly. Liposomes and FCDs share some excellent at-tributes such as being nontoxic and biodegradable and they can represent a potent delivery system for pharmaceutical compounds. They enhance the therapeutic efficacy of drugs via stabilizing the encapsulated material by circumventing barriers to cellular and tissue uptake. These agents facilitate long-term drug biodistribution to the intended locations of action while eliminating systemic side effects. This manuscript reviews recent progress with liposomes, nanoliposomes (collectively known as lipid vesicles) and fluorescent carbon dots, by exploring their key characteristics, applications, characterization, performance, and challenges. An extensive and intensive understanding of the synergistic interaction between liposomes and FCDs sets out a new research pathway to an efficient and theragnostic / theranostic drug delivery and targeting diseases such as cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2023.103614DOI Listing

Publication Analysis

Top Keywords

fluorescent carbon
12
carbon dots
12
liposomes nanoliposomes
12
synergistic fluorescent
8
drug delivery
8
liposomes fcds
8
liposomes
6
prospects challenges
4
challenges synergistic
4
dots liposomes
4

Similar Publications

Photothermal/GSH-dual-responsive organic quantum dots enabling traceable DNA delivery.

Int J Biol Macromol

September 2025

School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:

Quantum dots, with their superior intrinsic fluorescence and photostability, are emerging as a promising option for cancer gene therapy, diagnosis, and imaging. However, low gene delivery efficiency, insufficient targeting, and responsiveness remain challenges. To address these issues, PEI-based carbon quantum dots (CPNCs) were constructed by crosslinking polyethylenimine quantum dots (PQDs) with carbon quantum dots (CQDs) via disulfide bonds.

View Article and Find Full Text PDF

Novel carbon dots-based system for "on-off-on" fluorescence consecutive sensing of Au and L-Cys.

Food Chem

September 2025

School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China. Electronic address: zh

In this study, a novel carbon dots-based system was developed for the sequential quantification of Au and L-cysteine (L-Cys). The system comprises N,F-doped carbon dots (N,F-CDs), a custom-designed miniaturized fluorimeter, and test strips. The N,F-CDs exhibit outstanding optical properties, including a large Stokes shift (127 nm) and high fluorescence intensity.

View Article and Find Full Text PDF

Long-wavelength emission carbon dots as ratiometric fluorescent and colorimetric dual-mode sensors for environmental sensing and bioimaging of hypochlorite.

J Hazard Mater

August 2025

Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China. Electronic address:

For the first time, long-wavelength red emission carbon dots (R-CDs) were prepared as ratiometric fluorescent and colorimetric dual-mode sensors for detecting ClO using a simple one-step hydrothermal method. R-CDs exhibited intrinsic red fluorescence at 587 nm. Upon interaction with ClO, a new and enhanced green fluorescence at 535 nm was observed, which was attributed to resulting from the oxidation of surface hydroxyl (-OH) groups to carbonyl (CO) groups.

View Article and Find Full Text PDF

Source-specific insights into photochemical and microbial degradation of dissolved organic matter in coastal environments.

Mar Environ Res

September 2025

Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China.

Coastal zones are critical for the biogeochemical cycling of dissolved organic matter (DOM) in marine ecosystems, yet the relative importance of photochemical and microbial degradation in DOM transformation remains poorly understood due to complex hydrodynamics, diverse sources, and human activities. Through 14-day laboratory incubations, we investigated DOM transformation mechanisms from three common marine coastal space uses: port, mariculture and inshore areas adjacent to Yantai City. DOM characterization was performed using fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) and UV-Vis spectroscopic indices.

View Article and Find Full Text PDF