Changes in the Localization of Polyamine Spermidine in the Rat Retina with Age.

Biomedicines

Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyamines (PAs) in the nervous system has a key role in regeneration and aging. Therefore, we investigated age-related changes in the expression of PA spermidine (SPD) in the rat retina. Fluorescent immunocytochemistry was used to evaluate the accumulation of SPD in retinae from rats of postnatal days 3, 21, and 120. Glial cells were identified using glutamine synthetase (GS), whereas DAPI, a marker of cell nuclei, was used to differentiate between retinal layers. SPD localization in the retina was strikingly different between neonates and adults. In the neonatal retina (postnatal day 3-P3), SPD is strongly expressed in practically all cell types, including radial glia and neurons. SPD staining showed strong co-localization with the glial marker GS in Müller Cells (MCs) in the outer neuroblast layer. In the weaning period (postnatal day 21-P21), the SPD label was strongly expressed in all MCs, but not in neurons. In early adulthood (postnatal day 120-P120), SPD was localized in MCs only and was co-localized with the glial marker GS. A decline in the expression of PAs in neurons was observed with age while glial cells accumulated SPD after the differentiation stage (P21) and during aging in MC cellular endfoot compartments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10135861PMC
http://dx.doi.org/10.3390/biomedicines11041008DOI Listing

Publication Analysis

Top Keywords

postnatal day
12
rat retina
8
spd
8
glial cells
8
glial marker
8
changes localization
4
localization polyamine
4
polyamine spermidine
4
spermidine rat
4
retina
4

Similar Publications

Early-life experiences shape neural networks, with heightened plasticity during the so-called "sensitive periods" (SP). SP are regulated by the maturation of GABAergic parvalbumin-positive (PV+) interneurons, which become enwrapped by perineuronal nets (PNNs) over time, modulating SP closure. Additionally, the opening and closing of SP are orchestrated by two distinct gene clusters known as "trigger" and "brake".

View Article and Find Full Text PDF

Progressive lifespan modifications in the corpus callosum following a single concussion in juvenile male mice monitored by diffusion MRI.

Exp Neurol

September 2025

CNRS UMR 5536 RMSB, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; CNRS UMR 7372 CEBC, La Rochelle University, Villiers-en-Bois, France.

Introduction: The vulnerability of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, including preclinical rodent models, lacking are comprehensive longitudinal studies spanning the mouse lifespan. We previously reported early WM modifications using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi.

View Article and Find Full Text PDF

Clinical Doses of Gadodiamide Have No Damaging Effects on Cochlear Tissue In Vitro and In Vivo.

Neurotoxicology

September 2025

Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China. Electronic address:

Gadolinium-based contrast agents (GBCAs) are widely used in systemic magnetic resonance imaging (MRI) and can be employed in otology to evaluate endolymphatic hydrops in patients with Ménière's disease. Given the heavy metal properties of gadolinium and its tendency to deposit in tissues, it is essential to assess its ototoxic risk. We evaluated the ototoxicity of gadodiamide using in vitro and in vivo models.

View Article and Find Full Text PDF

Neonatal sevoflurane exposure disrupted fatty acids metabolism, leading to hypomyelination and neurological impairments.

Biomed Pharmacother

September 2025

Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China; Key Laboratory of Clinical Neurology, Ministry of Education, Hebei Medical University, Shijiazhuang, Heb

Myelin is a lipid-rich substance that is crucial for neural function. Neonatal anesthesia has been linked to neurological impairments associated with myelination dysfunction. This study sought to evaluate whether disrupted fatty acid homeostasis is involved in the mechanism of sevoflurane developmental neurotoxicity.

View Article and Find Full Text PDF

Pelvic visceromotor functions such as micturition are regulated by coordinated autonomic and somatic motor pathways from the central nervous system. The parasympathetic system induces detrusor muscle contraction while the somatic system facilitates relaxation of the external urethral sphincter, ensuring synchronized and efficient bladder emptying during the voiding process. This study explores the relationship between Barrington's nucleus corticotropin-releasing hormone (CRH)-ergic projections and the formation of perineural nets (PNNs) among spinal motoneurons, particularly parasympathetic preganglionic neurons in the intermediolateral nucleus (IML) and Onuf's nucleus during the maturation of the neural circuitry controlling pelvic visceromotor functions.

View Article and Find Full Text PDF