98%
921
2 minutes
20
3β-hydroxy-Δ5-steroid dehydrogenases (3βHSDs) are supposed to be involved in -cardenolide biosynthesis. Here, a novel () was isolated from shoot cultures and expressed in . Recombinant 3βHSD1 and 3βHSD2 shared 70% amino acid identity, reduced various 3-oxopregnanes and oxidised 3-hydroxypregnanes, but only 3βHSD2 converted small ketones and secondary alcohols efficiently. To explain these differences in substrate specificity, we established homology models using borneol dehydrogenase of (6zyz) as the template. Hydrophobicity and amino acid residues in the binding pocket may explain the difference in enzyme activities and substrate preferences. Compared to is weakly expressed in shoots. High constitutive expression of was realised by -mediated transfer of genes fused to the CaMV-35S promotor into the genome of wild type shoot cultures. Transformed shoots (35S: and 35S:) accumulated less cardenolides than controls. The levels of reduced glutathione (GSH), which is known to inhibit cardenolide formation, were higher in the 35S: lines than in the controls. In the 35S: lines cardenolide levels were restored after adding of the substrate pregnane-3,20-dione in combination with buthionine-sulfoximine (BSO), an inhibitor of GSH formation. RNAi-mediated knockdown of the yielded several shoot culture lines with strongly reduced cardenolide levels. In these lines, cardenolide biosynthesis was fully restored after addition of the downstream precursor pregnan-3β-ol-20-one, whereas upstream precursors such as progesterone had no effect, indicating that no shunt pathway could overcome the knockdown. These results can be taken as the first direct proof that 3βHSD1 is indeed involved in -cardenolide biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-2074-9186 | DOI Listing |
Environ Microbiol Rep
October 2025
DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India.
The plant (Asteraceae) is gaining popularity as a zero-calorie natural sugar substitute. This paper investigates the regeneration of from callus, emphasizing steviol glycoside (SGs) production and the evaluation of genetic similarity. The highest rate of callus induction (89.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec 62739, Morelos, Mexico.
In this study, an in vitro co-culture system of and its host, , was used, and the impact of their interaction on specialized metabolite content was analyzed. After 4 weeks of co-culture, haustoria formation was verified through environmental scanning electron and confocal microscopy, confirming the successful establishment of the plant-plant interaction. Shoot height and biomass of the aerial part of the hemiparasite were not affected significantly by co-culture.
View Article and Find Full Text PDFBraz J Biol
September 2025
Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Montes Claros, MG, Brasil.
The study of plant growth-promoting microorganisms is crucial for developing new agricultural strategies aimed at increasing productivity and resilience in semi-arid environments, where water scarcity and soil degradation pose critical challenges. Therefore, this study aimed to identify and relate the effects of inoculation of growth-promoting or nodulating microorganisms in isolates from chickpea roots grown in a semiarid region. The nodules were washed with distilled water, 95% ethanol and 3% NaClO.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran.
Copper (Cu) stress, an abiotic stressor, can severely damage plant cells. At elevated concentrations, copper becomes a toxic element within plants, triggering the generation of oxidative molecules and disrupting enzymatic activities. Salicylic acid (SA) is a plant growth regulator, while sodium nitroprusside (SNP) is a nitric oxide-releasing compound.
View Article and Find Full Text PDF