98%
921
2 minutes
20
Targeted genome editing technologies are becoming the most important and widely used genetic tools in studies of phytopathology. The "clustered regularly interspaced short palindromic repeats (CRISPR)" and its accompanying proteins (Cas) have been first identified as a natural system associated with the adaptive immunity of prokaryotes that have been successfully used in various genome-editing techniques because of its flexibility, simplicity, and high efficiency in recent years. In this review, we have provided a general idea about different CRISPR/Cas systems and their uses in phytopathology. This review focuses on the benefits of knock-down technologies for targeting important genes involved in the susceptibility and gaining resistance against viral, bacterial, and fungal pathogens by targeting the negative regulators of defense pathways of hosts in crop plants via different CRISPR/Cas systems. Moreover, the possible strategies to employ CRISPR/Cas system for improving pathogen resistance in plants and studying plant-pathogen interactions have been discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180734 | PMC |
http://dx.doi.org/10.3390/plants12091911 | DOI Listing |
Med Sci (Paris)
September 2025
CIRI, Centre international de recherche en infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.
The accumulated knowledge on the biology of the HIV-1 virus has led to the emergence of technologies that exploit the architecture of retroviruses and their integration or vectorization properties. This field of study constitutes retroviral vectorology, democratized in laboratories by the use of lentiviral vectors. By hijacking retroviral assembly, other systems are emerging and are increasingly mentioned in recent literature.
View Article and Find Full Text PDFPLoS One
September 2025
Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan.
T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
is a commensal bacterium that colonizes the gut of humans and animals and is a major opportunistic pathogen, known for causing multidrug-resistant healthcare-associated infections (HAIs). Its ability to thrive in diverse environments and disseminate antimicrobial resistance genes (ARGs) across ecological niches highlights the importance of understanding its ecological, evolutionary, and epidemiological dynamics. The CRISPR2 locus has been used as a valuable marker for assessing clonality and phylogenetic relationships in .
View Article and Find Full Text PDFMicroPubl Biol
August 2025
West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra, Ghana.
Bacterial defense mechanisms protect pathogens from host immunity, bacteriophages, and harsh environments. This study investigates defense systems in multidrug-resistant from Ghanaian hospital ICUs, focusing on CRISPR-Cas, restriction-modification (R-M), and toxin-antitoxin (TA) systems. Genomes of environmental (NS2) and clinical (PS4) strains were sequenced and analyzed using PADLOC, defensefinder, and TADB3.
View Article and Find Full Text PDF