Descending serotonergic modulation from rostral ventromedial medulla to spinal trigeminal nucleus is involved in experimental occlusal interference-induced chronic orofacial hyperalgesia.

J Headache Pain

Department of Prosthodontics, Center for Oral and Jaw Functional Diagnosis, Treatment and Research, School and Hospital of Stomatology, Peking University, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Dental treatment associated with unadaptable occlusal alteration can cause chronic primary myofascial orofacial pain. The serotonin (5-HT) pathway from the rostral ventromedial medulla (RVM) exerts descending modulation on nociceptive transmission in the spinal trigeminal nucleus (Sp5) and facilitates chronic pain. The aim of this study was to investigate whether descending 5-HT modulation from the RVM to the Sp5 is involved in the maintenance of primary myofascial orofacial hyperalgesia after persistent experimental occlusal interference (PEOI) or after delayed removal of experimental occlusal interference (REOI).

Methods: Expressions of 5-HT3A and 5-HT3B receptor subtypes in the Sp5 were assessed by immunofluorescence staining and Western blotting. The release and metabolism of 5-HT in the Sp5 were measured by high-performance liquid chromatography. Changes in the pain behavior of these rats were examined after specific pharmacologic antagonism of the 5-HT3 receptor, chemogenetic manipulation of the RVM 5-HT neurons, or selective down-regulation of 5-HT synthesis in the RVM.

Results: Upregulation of the 5-HT3B receptor subtype in the Sp5 was found in REOI and PEOI rats. The concentration of 5-HT in Sp5 increased significantly only in REOI rats. Intrathecal administration of Y-25130 (a selective 5-HT3 receptor antagonist) dose-dependently reversed the hyperalgesia in REOI rats but only transiently reversed the hyperalgesia in PEOI rats. Chemogenetic inhibition of the RVM 5-HT neurons reversed the hyperalgesia in REOI rats; selective down-regulation of 5-HT in advance also prevented the development of hyperalgesia in REOI rats; the above two manipulations did not affect the hyperalgesia in PEOI rats. However, chemogenetic activation of the RVM 5-HT neurons exacerbated the hyperalgesia both in REOI and PEOI rats.

Conclusions: These results provide several lines of evidence that the descending pathway from 5-HT neurons in the RVM to 5-HT3 receptors in the Sp5, plays an important role in facilitating the maintained orofacial hyperalgesia after delayed EOI removal, but has a limited role in that after persistent EOI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173589PMC
http://dx.doi.org/10.1186/s10194-023-01584-3DOI Listing

Publication Analysis

Top Keywords

5-ht neurons
16
reoi rats
16
hyperalgesia reoi
16
experimental occlusal
12
orofacial hyperalgesia
12
rvm 5-ht
12
peoi rats
12
reversed hyperalgesia
12
5-ht
10
hyperalgesia
9

Similar Publications

Chronic treatment with fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI), is known to promote neural plasticity. The role of fluoxetine in plasticity has been particularly tied to parvalbumin-positive interneurons, a key population of GABAergic neurons that regulate inhibitory tone and network stability. While our previous studies have highlighted fluoxetine-induced plasticity in the visual cortex and hippocampus, its cell-type-specific effects in the prefrontal cortex (PFC) remain unclear.

View Article and Find Full Text PDF

Introduction: Amblyopia is a neurodevelopmental visual disorder treated with occlusion or pharmacological penalization of the dominant, non-amblyopic eye in early childhood. After early childhood, efficacy of occlusion therapy is limited due to a reduction in neuronal plasticity, and no mainstay clinical treatment is available. Selective serotonin reuptake inhibitors (SSRIs) have been hypothesized to enhance neuroplasticity in the adult brain, thereby facilitating improvements in amblyopia.

View Article and Find Full Text PDF

Objective: To investigate the neural and molecular correlates of occupational burnout in nurses by integrating resting-state fMRI (rs-fMRI), clinical assessments, brain-wide gene expression, and neurotransmitter atlases.

Methods: Fifty-one female nurses meeting burnout criteria and 51 matched healthy controls underwent 3 T rs-fMRI. We analyzed fractional amplitude of low-frequency fluctuations (fALFF) and seed-based functional connectivity (FC), correlating findings with burnout (emotional exhaustion [EE], depersonalization [DP], and personal accomplishment [PA]).

View Article and Find Full Text PDF

Purpose: Limitations remain in peripheral nerve injury treatments. Previous studies suggest that serotonergic signaling promotes nerve regeneration by facilitating reinnervation and modulating neuronal guidance. This study aimed to evaluate the potential of serotonergic peripheral neuroregeneration using Zolmitriptan, a serotonin receptor agonist.

View Article and Find Full Text PDF

Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.

View Article and Find Full Text PDF