98%
921
2 minutes
20
Organoids generated from human pluripotent stem cells provide experimental systems to study development and disease, but quantitative measurements across different spatial scales and molecular modalities are lacking. In this study, we generated multiplexed protein maps over a retinal organoid time course and primary adult human retinal tissue. We developed a toolkit to visualize progenitor and neuron location, the spatial arrangements of extracellular and subcellular components and global patterning in each organoid and primary tissue. In addition, we generated a single-cell transcriptome and chromatin accessibility timecourse dataset and inferred a gene regulatory network underlying organoid development. We integrated genomic data with spatially segmented nuclei into a multimodal atlas to explore organoid patterning and retinal ganglion cell (RGC) spatial neighborhoods, highlighting pathways involved in RGC cell death and showing that mosaic genetic perturbations in retinal organoids provide insight into cell fate regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713453 | PMC |
http://dx.doi.org/10.1038/s41587-023-01747-2 | DOI Listing |
Neuroscience
September 2025
Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:
Visual motion perception declines during natural aging in most animals including humans. Edible berries of blackcurrant (BC) and its extracted anthocyanins (BCAs) have beneficial effects on human eyes. However, the effect of BCAs on the perception of moving objects and other dynamic visual patterns remains unknown.
View Article and Find Full Text PDFExp Eye Res
September 2025
Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China. Electronic address:
The human retina exhibits complex cellular heterogeneity which is critical for visual function, yet comprehensive ethnic-specific references are scarce in ophthalmic transcriptomics. The lack of single-cell RNA sequencing (scRNA-seq) data from Asian populations particularly Chinese donors imposes significant limitations in understanding population-specific retinal biology. We constructed the first comprehensive single-cell transcriptomic atlas of the human retina from Chinese donors, generated through high-throughput scRNA-seq of ∼290,000 viable cells obtained from 18 fresh retinal specimens (living donor and post-mortem specimens).
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Center for Genetic Engineering and Biotechnology, Cubanacan, 10600 Havana, POBox 6162, Cuba. Electronic address:
Vascular endothelial growth factor (VEGF) is a key player in the development and progression of several diseases, most notably cancer and retinal disorders. Over the last twenty years, VEGF has emerged as a significant therapeutic target for these conditions. This study reports the isolation and characterization of a fully synthetic, humanized, affinity-matured single-domain antibody fragment (VHH) designed to target VEGF.
View Article and Find Full Text PDFInt Ophthalmol
September 2025
Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technolog
Purpose: To analyze macular microvascular networks and investigate correlations between visual acuity and quantitative parameters in patients with Leber's hereditary optic neuropathy (LHON) using optical coherence tomography angiography (OCTA).
Methods: An observational, cross-sectional study was conducted, including 25 eyes from 25 genetically confirmed chronic LHON patients and 25 eyes from 25 age-matched healthy controls. Images were obtained using a spectral domain OCTA system.
Dev Biol
September 2025
Massachusetts Eye and Ear, Boston, MA; Department of Ophthalmology, Harvard Medical School, Boston, MA. Electronic address:
Tissue development is a complex spatiotemporal process with multiple interdependent components. Anatomical, histological, sequencing, and evolutional strategies can be used to profile and explain tissue development from different perspectives. The introduction of single-cell RNA sequencing (scRNAseq) methods and the computational tools allows to deconvolute developmental heterogeneity and draw a decomposed uniform map.
View Article and Find Full Text PDF