98%
921
2 minutes
20
The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.14227 | DOI Listing |
ACS Nano
September 2025
School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230000, China.
Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for arbitrary color adjustments during the coloring process, current structural color surfaces lack flexibility in control, as their colors are difficult to reprocess or adjust once formed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.
The metal-nitrogen chelated species, MN, have shown promise as efficient electrocatalysts for nitrate reduction, yet the symmetric arrangement of N atoms results in suboptimal adsorption affinity toward reaction substrates and intermediates. The current approaches to breaking the symmetry of MN suffer from inaccuracy and inhomogeneity because of the lack of strategies stemming from molecular design aspects. Herein, we report the construction of symmetry-broken MNO sites in coordination polymers via sequential coordination-covalent control in a one-pot reaction.
View Article and Find Full Text PDFBiophys J
September 2025
Department of Physics and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
A variety of biomolecular systems rely on exploratory dynamics to reach target locations or states within a cell. Without a mechanism to remotely sense and move directly towards a target, the system must sample over many paths, often including resetting transitions back to the origin. We investigate how exploratory dynamics can confer an important functional benefit: the ability to respond to small changes in parameters with large shifts in the steady-state behavior.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.
Heterostructures have emerged as promising contenders for surface-enhanced Raman scattering (SERS) applications. Nevertheless, the construction of a composite SERS substrate with well-matched energy levels persists as a challenge, primarily due to the restricted selection of SERS-active materials. In this study, we successfully synthesized a Ag nanoparticles (NPs)/ZnO nanorods (NRs)/GaN heterojunction featuring type II staggered energy bands, which provides an outstanding platform for efficient SERS detection.
View Article and Find Full Text PDFInt J Sport Nutr Exerc Metab
September 2025
Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
Technological innovations can provide cyclists and their support team additional data. These data have potential to improve understanding of performance determinants and could be used to identify and tailor nutritional strategies to improve cycling performance. This potential, however, is dependent on the quality, interpretation, and practical use of the data generated.
View Article and Find Full Text PDF