Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecular characterization of avian pathogenic Escherichia coli (APEC) is challenging due to the complex nature of its associated disease, colibacillosis, in poultry. Numerous efforts have been made toward defining APEC, and it is becoming clear that certain clonal backgrounds are predictive of an avian E. coli isolate's virulence potential. Thus, APEC can be further differentiated as high-risk APEC based upon their clonal background's virulence potential. However, less clear is the degree of overlap between clinical isolates of differing bird type, and between clinical and gastrointestinal isolates. This study aimed to determine genomic similarities and differences between such populations, comparing commercial broiler vs. turkey isolates, and clinical vs. gastrointestinal isolates. Differences were observed in Clermont phylogenetic groups between isolate populations, with B2 as the dominant group in turkey clinical isolates and G as the dominant group in broiler clinical isolates. Nearly all clinical isolates were classified as APEC using a traditional gene-based typing scheme, whereas 53.4% and 44.1% of broiler and turkey gastrointestinal isolates were classified as APEC, respectively. High-risk APEC were identified among 31.0% and 46.9% of broiler and turkey clinical isolates, compared with 5.7% and 2.9% of broiler and turkey gastrointestinal isolates. As found in previous studies, no specific known virulence or fitness gene sets were identified which universally differentiate between clinical and gastrointestinal isolates. This study further demonstrates the utility of a hybrid APEC typing approach, considering both plasmid content and clonal background, for the identification of dominant and highly virulent APEC clones in poultry production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189387PMC
http://dx.doi.org/10.1016/j.psj.2023.102712DOI Listing

Publication Analysis

Top Keywords

clinical isolates
20
gastrointestinal isolates
20
broiler turkey
16
clinical gastrointestinal
12
isolates
11
apec
9
escherichia coli
8
virulence potential
8
high-risk apec
8
clinical
8

Similar Publications

Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.

View Article and Find Full Text PDF

Anti-plasmid defense in hypervirulent involves Type I-like and Type IV restriction modification systems.

Emerg Microbes Infect

September 2025

Infectious Diseases Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

Hypervirulent (hvKp) and classical multidrug-resistant (MDR) strains belong to distinct lineages and hvKp are typically characterized by hypermucoid capsules that have been shown to limit horizontal gene transfer (HGT), including plasmid acquisition. However, the convergence of hypervirulence and MDR is increasingly common worldwide. When we profiled 127 antibiotic-susceptible hvKp strains, we found that most (86%) are highly permissive to plasmid transfer despite their capsules.

View Article and Find Full Text PDF

In the 21st century, cancer remains shrouded in complex ways, imbued with sociocultural meanings that extend far beyond its clinical and biological aspects. The fear and anxiety surrounding cancer often prompt family and friends to respond with either excessive protection or emotional detachment, leaving patients feeling isolated and unsupported. This article challenges entrenched stereotypes, particularly cultural tendencies in India to conceal cancer diagnoses, associate the disease with karmic retribution, and view it through fatalistic and death-centered perspectives.

View Article and Find Full Text PDF

Background: The long-term clinical efficacy of intraportal islet transplantation is hampered by islet loss due to inflammation, oxidative stress, and insufficient vascularization. This study explores the venous sac as an alternative implantation site for islet transplantation in large animal models.

Methods: An immunosuppressed, diabetic cynomolgus monkey received allogeneic islet implants in its mesenteric venous sac, with metabolic assessments over 112 days.

View Article and Find Full Text PDF