Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The importance of starch in nutrition and industry is unquestionable. This study investigated the changes in physicochemical, structural, and functional properties of cornstarch from newly harvested Zhengdan958 (Zd958) and Xianyu335 (Xy335) corn during for 0, 20, 40, and 60 d at ambient temperature. The results showed no significant changes in the proximate components and apparent structure of Zd958 and Xy335 cornstarch under postharvest ripening conditions. Compared with 0 d, the molecular weight distribution and mass fraction of Zd958 and Xy335 cornstarch have changed significantly, the relative crystallinity (RC) has significantly increased from 26.4% to 26.5%-28.8% and 28.4%, and R1045/1022 has significantly increased from 0.828 to 0.826 to 0.843 and 0.883, respectively. The changes in structure indicated that the synthesis and rearrangement of cornstarch molecules formed highly ordered crystalline structures, and the ordered structures of long-range and short-range molecules increased. Moreover, the changes in structure affected the pasting characteristics and texture profiles of cornstarch, therefore, affecting the final food quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160505PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e15650DOI Listing

Publication Analysis

Top Keywords

physicochemical structural
8
structural functional
8
functional properties
8
cornstarch newly
8
newly harvested
8
postharvest ripening
8
ripening conditions
8
ambient temperature
8
zd958 xy335
8
xy335 cornstarch
8

Similar Publications

The development of alternative methods to animal testing has gained momentum over the years, including the rapid growth of methods, which are faster and more cost-effective. A large number of tools have been published, focusing on Read-Across, (quantitative) Structure-Activity Relationship ((Q)SAR) models, and Physiologically Based Pharmacokinetic (PBPK) models. All of these methods play a crucial role in the risk assessment for cosmetics.

View Article and Find Full Text PDF

The pyrolysis of flue-cured tobacco stalks (TS) faces challenges such as low bio-oil value and utilization efficiency. Existing studies have overlooked the anatomical heterogeneity of tobacco stalks, thereby limiting the directional regulation of high-value components, such as nicotine and phenolic compounds. This study divides TS into the husk (TSH), xylem (TSX), and pith (TSP), and investigates their physicochemical properties, pyrolysis behavior (through TGA and fixed-bed pyrolysis experiments), and interactions.

View Article and Find Full Text PDF

Understanding the structural and functional diversity of toxin proteins is critical for elucidating macromolecular behavior, mechanistic variability, and structure-driven bioactivity. Traditional approaches have primarily focused on binary toxicity prediction, offering limited resolution into distinct modes of action of toxins. Here, we present MultiTox, an ensemble stacking framework for the classification of toxin proteins based on their molecular mode of action: neurotoxins, cytotoxins, hemotoxins, and enterotoxins.

View Article and Find Full Text PDF

This study aimed to compare the species and functional diversity of macrobenthic communities between natural and planted mangrove ecosystems. Samples were collected from two mangrove sites in the Gulf of Oman. Physicochemical properties of water and sediment characteristics were analyzed to assess their correlation with community structure.

View Article and Find Full Text PDF

The rapid advancement of three-dimensional (3D) printing technologies has significantly expanded their potential applications such as sensors and detector technology. In this study, the gamma-ray shielding performance of ulexite-doped composite resins fabricated via Digital Light Processing (DLP) 3D printing was experimentally investigated to evaluate radiation attenuation capacity. Composite resins containing different ulexite loadings (0, 1, 3, and 5 wt%) were exposed to gamma rays at energies of 356, 662, 1173, and 1333 keV to evaluate their attenuation characteristics.

View Article and Find Full Text PDF