Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To detect the plant hormone ethylene, three arylolefins were employed to react with ethylene based on olefin metathesis. In this study, three fluorescence probes were successfully prepared using a first-generation Grubbs catalyst (G-1) and arylolefin with terminal vinyl groups. The probes were characterized using various techniques, including UV-vis, fluorescence, FT-IR, H NMR, C NMR, and P NMR spectroscopies and HRMS. The probes exhibited an emission maximum at 394 nm and showed excellent ethylene response. The detection limits for the probes were calculated to be 0.128, 0.074, and 0.188 μL/mL (3σ), respectively, based on fluorescence stimulation by ethylene gas. Additionally, the YGTZ-2 probe was used to detect ethylene gas during the storage process of tomatoes. This work expands the application of arylolefin in ethylene detection and provides a foundation for the development of economic, rapid, and convenient photosensitive sensors for ethylene in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157861PMC
http://dx.doi.org/10.1021/acsomega.3c00586DOI Listing

Publication Analysis

Top Keywords

ethylene
8
fluorescence probes
8
nmr nmr
8
ethylene gas
8
probes
5
design preparation
4
preparation ethylene
4
fluorescence
4
ethylene fluorescence
4
probes based
4

Similar Publications

Strigolactones modulate jasmonate-dependent transcriptional reprogramming during wound signalling in Arabidopsis.

J Appl Genet

September 2025

Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland.

Mechanical wounding triggers rapid transcriptional and hormonal reprogramming in plants, primarily driven by jasmonate (JA) signalling. While the role of JA, ethylene, and salicylic acid in wound responses is well characterised, the contribution of strigolactones (SLs) remains largely unexplored. Here, for the first time, it was shown that SLs modulate wound-induced transcriptional dynamics in Arabidopsis thaliana.

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF

High Performance Transmission-Type Daytime Radiative Cooling Film with a Simple and Scalable Method.

Adv Mater

September 2025

Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and International Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.

Transmission-type radiative cooling textiles represent a vital strategy for personal thermal management. However, traditional preparation methods based on heat-induced phase separation face significant challenges regarding cost, environmental impact, and optical performance. Herein, a novel preparation method is devloped by blending mid-IR transparent solid styrene ethylene butylene styrene (SEBS) with solid polyethylene (PE), enabling the creation of pores through dissolving SEBS.

View Article and Find Full Text PDF

High entropy electrolytes show great potential in the design of next generation batteries. Demonstrating how salt components of high entropy electrolytes influence the charge storage performance of batteries is essential in the tuning and design of such advanced electrolytes. This study investigates the transport and interfacial properties for lithium hexafluorophosphate (LiPF) in ethylene carbonate and dimethyl carbonate (EC/DMC) solvent with commonly used additives for high entropy electrolytes (LiTFSI, LiDFOB, and LiNO).

View Article and Find Full Text PDF

Ensuring sufficient crop yields in an era of rapid population growth and limited arable land requires innovative strategies to enhance plant resilience and sustain, or even improve, growth and productivity despite environmental stress. Besides symbiotic nitrogen fixation, rhizobia may play a central role in sustainable agriculture by alleviating the detrimental effects of ethylene-a key stress hormone in plants-especially under conditions like drought through the deamination of 1-aminocyclopropane-1-carboxylic acid (ACC). In this study, we focused on genetically engineering a new Bradyrhizobium sp.

View Article and Find Full Text PDF