A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Bimetallic bionic taste sensor for perception of the synergistic effect of umami substances. | LitMetric

Bimetallic bionic taste sensor for perception of the synergistic effect of umami substances.

Biosens Bioelectron

Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, 255049, China. Electronic address:

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synergistic effect is one of the main properties of umami substances, elucidating the synergistic effect of umami is of great significance in the food industry. In this study, a bimetallic bionic taste sensor was developed to evaluate the synergistic effect of umami substances based on the perceptual mechanism of the human taste system. The Venus flytrap domain of T1R1 which is in charge of recognizing umami ligands was employed as the sensing element and self-assembled on the bimetallic nanomaterial (MoS-PtPd) by Au-S bonding, the binding of receptors and ligands is characterized by changes of electrical signals. The sensor had good linearity (R > 0.99) and wide detection range in the detection of different kinds of umami substances (amino acids, nucleotides, organic acids, umami peptides) with detection limits as low as 0.03 pM. Comparing with electronic tongues, the sensor owned multiple characteristics of human taste system and could recognize the presence of synergistic effect of umami substances in a variety of real samples. Moreover, the differences in synergistic effect at different concentrations and ratios were also explored, the findings showed that the synergistic effect was more obvious at lower concentrations and balanced ratios of multiple umami substances added. The strategy would afford a promising platform for in-depth research on the mechanism of synergistic effect and multifunctional industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115357DOI Listing

Publication Analysis

Top Keywords

umami substances
24
synergistic umami
16
umami
9
bimetallic bionic
8
bionic taste
8
taste sensor
8
synergistic
8
human taste
8
taste system
8
substances
6

Similar Publications