98%
921
2 minutes
20
The main protease (3-chymotrypsin-like protease, 3CLpro) of SARS-CoV-2 has become a focus of anti-coronavirus research. Despite efforts, drug development targeting 3CLpro has been hampered by limitations in the currently available activity assays. Additionally, the emergence of 3CLpro mutations in circulating SARS-CoV-2 variants has raised concerns about potential resistance. Both emphasize the need for a more reliable, sensitive, and facile 3CLpro assay. Here, we report an orthogonal dual reporter-based gain-of-signal assay for measuring 3CLpro activity in living cells. It builds on the finding that 3CLpro induces cytotoxicity and reporter expression suppression, which can be rescued by its inhibitor or mutation. This assay circumvents most limitations in previously reported assays, especially false positives caused by nonspecific compounds and signal interference from test compounds. It is also convenient and robust for high throughput screening of compounds and comparing the drug susceptibilities of mutants. Using this assay, we screened 1789 compounds, including natural products and protease inhibitors, with 45 compounds that have been reported to inhibit SARS-CoV-2 3CLpro among them. Except for the approved drug PF-07321332, only five of these inhibit 3CLpro in our assays: GC376; PF-00835231; S-217622; Boceprevir; and Z-FA-FMK. The susceptibilities of seven 3CLpro mutants prevalent in circulating variants to PF-07321332, S-217622, and GC376 were also assessed. Three mutants were identified as being less susceptible to PF-07321322 (P132H) and S-217622 (G15S, T21I). This assay should greatly facilitate the development of novel 3CLpro-targeted drugs and the monitoring of the susceptibility of emerging SARS-CoV-2 variants to 3CLpro inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187092 | PMC |
http://dx.doi.org/10.1080/22221751.2023.2211688 | DOI Listing |
Protein Expr Purif
September 2025
Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam; Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam. Electronic ad
The 3C-like protease (3CLpro) of SARS-CoV-2 is a crucial target for antiviral drugs due to its essential role in viral polyprotein processing. In this study, we designed and produced a modular fluorescent recombinant substrate (6×His-ECFP-AVLQSGFRK-EYFP), which was then immobilized on Ni-NTA magnetic beads (Ni-NTA-6×His-ECFP-AVLQSGFRK-EYFP) for the assay of 3CLpro activity. Upon cleavage at the specific AVLQ↓SG motif, the EYFP fragment was released into the supernatant and quantified via fluorescence measurement (Ex/Em = 480/528 nm).
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala-147004, Punjab, India.
The main protease (M, also known as 3CL), a pivotal enzyme of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been considered a prime target for drug development due to its crucial role in viral replication and transcription. Importantly, a high degree of conservation in more than 13 million SARS-CoV-2 sequences affords M as a promising target for antiviral therapy to impede the genetic evolution of SARS-CoV-2. In this work, ∼16 million compounds from various small molecule databases were screened using ligand-based virtual screening (LBVS) with boceprevir as the reference compound to identify new small molecule inhibitors of M.
View Article and Find Full Text PDFJ Inorg Biochem
December 2025
Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany. Electronic address:
Selected gold(III)-dithiocarbamato complexes were identified as potent inhibitors of two critical enzymes involved in the SARS-CoV-2 replication cycle, the papain-line protease (PL) and the 3-chymotrypsin-like protease (3CL), showing exceptional inhibition of PL with IC values in the range of 0.1-0.2 μM and rather moderate activity against 3CL (IC values 8-9 μM).
View Article and Find Full Text PDFProtein Sci
September 2025
Department of Chemistry, McGill University, Montreal, Quebec, Canada.
The emergence of SARS-CoV-2 and other lethal coronaviruses has prompted extensive research into targeted antiviral treatments, particularly focusing on the viral 3C-like protease (3CL) due to its essential role for viral replication. However, the rise of drug resistance mutations poses threats to public health and underscores the need to predict resistance mutations and understand the mechanism of how these mutations confer resistance. The binding of inhibitor to 3CL drives it from the monomeric to the active dimeric form, which can counterintuitively lead to enzyme activation rather than inhibition.
View Article and Find Full Text PDFInflammopharmacology
August 2025
Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
Carvedilol (CVL) is a lipophilic third generation non-selective beta and alpha-1 adrenoceptor blocker. CVL has pleiotropic antioxidant and anti-inflammatory effects by reducing the production of reactive oxygen species (ROS) and inhibiting of inflammatory signaling pathways. In virtue of its antioxidant and anti-inflammatory effects, CVL can ameliorate COVID-19 and related complications.
View Article and Find Full Text PDF