Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zinc oxide nanoparticles, with a hexagonal flake structure, are of significant interest across a range of applications including photocatalysis and biomedicine. Simonkolleite (Zn(OH)Cl·HO), a layered double hydroxide, is a precursor for ZnO. Most simonkolleite synthesis routes require precise pH adjustment of Zn-containing salts in alkaline solution, and still produce some undesired morphologies along with the hexagonal one. Additionally, liquid-phase synthesis routes, based on conventional solvents, are environmentally burdensome. Herein aqueous ionic liquid, betaine hydrochloride (betaine·HCl), solutions are used to directly oxidise metallic Zn, producing pure simonkolleite nano/microcrystals (X-ray diffraction analysis, thermogravimetric analysis). Imaging (scanning electron microscopy) showed regular and uniform hexagonal simonkolleite flakes. Morphological control, as a function of reaction conditions (betaine·HCl concentration, reaction time, and reaction temperature), was achieved. Different growth mechanisms were observed as a function of the concentration of betaine·HCl solution, both traditional classical growth of individual crystals and non-traditional growth patterns; the latter included examples of Ostwald ripening and oriented attachment. After calcination, simonkolleite's transformation into ZnO retains its hexagonal skeleton; this produces a nano/micro-ZnO with a relatively uniform shape and size through a convenient reaction route.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153477PMC
http://dx.doi.org/10.1039/d3na00108cDOI Listing

Publication Analysis

Top Keywords

betaine hydrochloride
8
synthesis routes
8
controlling simonkolleite
4
simonkolleite crystallisation
4
crystallisation metallic
4
metallic oxidation
4
oxidation betaine
4
hydrochloride solution
4
solution zinc
4
zinc oxide
4

Similar Publications

Environmental sustainability is seriously threatened by the discharge of wastewater containing hazardous heavy metals (such as Cr, Cd, As, Hg, etc.). The utilization of microalgae has recently come to light as a viable, environmentally acceptable method for removing heavy metals from contaminated sites.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.

View Article and Find Full Text PDF

Phosphorus limitation induces membrane lipid remodeling in aquatic phytoplankton.

Mar Environ Res

September 2025

Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; University of Chinese Academ

Phosphorus (P) is a critical limiting nutrient for phytoplankton growth in aquatic ecosystems. Under P-limitation, phytoplankton adapt by remodeling membrane lipids, replacing phospholipids (PLs) with non-P lipids such as sulfolipid sulfoquinovosyldiacylglycerol (SQDG) and betaine lipids (BLs). This mechanism is essential for reevaluating the relationship between phosphate (PO) concentrations and primary productivity.

View Article and Find Full Text PDF

Due to the growing environmental and health concerns with chemical plant stimulants, there is a growing need to find alternative sources of plant stimulants that could help the seeds germinate and sustain their growth in the global climate change scenario. The article compares various seed stimulants such as chemical compounds (benzothiadiazole, salicylic acid, glycine betaine), alcoholic extracts from commercial plant products (English oak bark, ginger spices, turmeric spices, caraway fruits) and from wild plant leaves (Japanese pagoda tree, Himalayan balsam, stinging nettle and Bohemian knotweed) and their effects on wheat seed germination and seedling characteristics. It was found that BTH had significantly lower effect on seedling characteristics such as SG3 (%), SG5 (%), R/S III, SVI I (mm) and SVI III (mg) followed by ZO on SG3 (%), SG5 (%) and GI (unit).

View Article and Find Full Text PDF

Anti-obesity effects of water-dispersible turmeric extract via gut barrier and metabolite modulation in high-fat diet-fed mice.

Food Res Int

November 2025

Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:

Turmeric (Curcuma longa) exhibits anti-obesity properties, yet its low water solubility limits bioavailability. In this study, a water-dispersible turmeric rhizome extract (WDTE) was developed using nano-dispersion technology with maltodextrin as a wall material and characterized by UPLC-QTOF-MS, dynamic light scattering, and zeta potential analysis. The WDTE contained 10 identified metabolites, including five diarylheptanoids such as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, with curcumin quantified at 7.

View Article and Find Full Text PDF