Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although microbes are the major agent of wood decomposition - a key component of the carbon cycle - the degree to which microbial community dynamics affect this process is unclear. One key knowledge gap is the extent to which stochastic variation in community assembly, e.g. due to historical contingency, can substantively affect decomposition rates. To close this knowledge gap, we manipulated the pool of microbes dispersing into laboratory microcosms using rainwater sampled across a transition zone between two vegetation types with distinct microbial communities. Because the laboratory microcosms were initially identical this allowed us to isolate the effect of changing microbial dispersal directly on community structure, biogeochemical cycles and wood decomposition. Dispersal significantly affected soil fungal and bacterial community composition and diversity, resulting in distinct patterns of soil nitrogen reduction and wood mass loss. Correlation analysis showed that the relationship among soil fungal and bacterial community, soil nitrogen reduction and wood mass loss were tightly connected. These results give empirical support to the notion that dispersal can structure the soil microbial community and through it ecosystem functions. Future biogeochemical models including the links between soil microbial community and wood decomposition may improve their precision in predicting wood decomposition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156657PMC
http://dx.doi.org/10.1038/s43705-023-00253-5DOI Listing

Publication Analysis

Top Keywords

wood decomposition
20
microbial community
12
knowledge gap
8
laboratory microcosms
8
soil fungal
8
fungal bacterial
8
bacterial community
8
soil nitrogen
8
nitrogen reduction
8
reduction wood
8

Similar Publications

Unveiling potential of Gordonia species and their cutinases for polyester decomposition.

Int J Biol Macromol

September 2025

BOKU University, Department of Agricultural Sciences, Institute of Environmental Biotechnology, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria. Electronic address:

The growing issue of petroleum-based polymer waste demands sustainable recycling strategies, with enzymatic processes offering a promising solution. This study investigates enzymatic decomposition of polyethylene terephthalate (PET) and polybutylene adipate terephthalate (PBAT) by Gordonia species, known for their pollutant-degrading capabilities. When cultivated with PET, G.

View Article and Find Full Text PDF

Establishment of an antimetabolite-based transformation system for the wood-decaying basidiomycete .

Appl Environ Microbiol

September 2025

Course in Molecular Biology, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.

The model wood-decaying basidiomycete has been extensively studied to elucidate the molecular mechanisms of wood decomposition. However, genetic studies have been limited by the lack of adequate genetic tools. Here, we established an antimetabolite-based transformation system, originally developed for ascomycetes, for use in .

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) of alkanethiols on gold surfaces are important for various technological applications, such as electroanalytical sensors, organic electronic devices, and catalysts. However, providing a consistent computational description of the unique structural features of these SAMs, such as adsorption patterns, chain conformations, and superlattice arrangements, is challenging, particularly within a versatile computational framework that can simulate both the structural features of these systems and their irradiation-driven chemical transformations. This study systematically analyzes molecular mechanics force field parameters for bonded and nonbonded (van der Waals and electrostatic) interactions in alkanethiol SAMs with different terminal groups.

View Article and Find Full Text PDF

Variation in Microbiota and Chemical Components Within During Initial Wood Decay.

Microorganisms

July 2025

Provincial Key Laboratory of Conservation Biology, School of Forestry, Jiangxi Agricultural University, Nanchang 330045, China.

Deadwood is essential for the forest ecosystem productivity and stability. A growing body of evidence indicates that deadwood-inhabiting microbes are effective decomposition agents, yet little is known about how changes in microbial communities during the initial deadwood decay. In a small forest area, we performed dense sampling from the top, middle, and bottom portions of two representative cultivars logs to track deadwood xylem microbiota shift during the initial deadwood decay.

View Article and Find Full Text PDF

Microscopic soil invertebrates are known to play an important role in forest ecosystems through their interactions with the rhizosphere and belowground food webs. However, little is known about the abundance, diversity, distribution, and ecological roles of micro-invertebrates above the forest floor, particularly within tree-related microhabitats (TreMs). In this study, we sampled 18 distinct types of TreMs in the UNESCO World Heritage old-growth beech forest of La Massane, located in the southeastern Pyrenees.

View Article and Find Full Text PDF