98%
921
2 minutes
20
An effective method was proposed for constructing carbon dots (CDs)-sensitized multijunction composite photoelectrodes via one-step cladding a CDs-embedded ZnO amorphous overlayer on vertically aligned metal oxide nanowires. This strategy involved the double role of hexamethylenetetramine (HMTA) in the ethylene glycol (EG) solvent mixed with a controllable trace amount of water. In the water-deficient synthetic system, a limited portion of HMTA served as the pH buffer and hydroxyl source to force the hydrolytic process of zinc ions for the production of ZnO. The precipitated ZnO clusters were instantly capped by EG molecules through the activated alkoxidation reaction, and further crosslinked into an amorphous network surrounding the individual nanowires. Meanwhile, the excess HMTA was simultaneously depleted as the precursor for producing CDs in the EG solution through thermal condensation, which were packed in the gradually formed aggregates. We revealed that a CDs-embedded amorphous ZnO overlayer with an appropriate proportion of ingredient could be tailored through an optimal tradeoff between hydrolysis and condensation of HMTA. Benefiting from the synergy of the amorphous ZnO layer and the embedded CDs, the multijunction composite photoanodes exhibited significantly improved PEC performance and stability for water oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.04.101 | DOI Listing |
ACS Appl Mater Interfaces
July 2024
UNAM─Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye.
Self-powered sensors have the potential to enable real-time health monitoring without contributing to the ever-growing demand for energy. Piezoelectric nanogenerators (PENGs) respond to mechanical deformations to produce electrical signals, imparting a sensing capability without external power sources. Textiles conform to the human body and serve as an interactive biomechanical energy harvesting and sensing medium without compromising comfort.
View Article and Find Full Text PDFNanophotonics
September 2023
Institute of Physics, Lodz University of Technology, Łódź, Poland.
Highly reflective mirrors are indispensable components in a variety of state-of-the-art photonic devices. Typically used, bulky, multi-layered distributed Bragg (DBR) reflectors are limited to lattice-matched semiconductors or nonconductive dielectrics. Here, we introduce an inverted refractive index-contrast grating (ICG) as compact, single-layer alternative to DBR.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2023
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:
An effective method was proposed for constructing carbon dots (CDs)-sensitized multijunction composite photoelectrodes via one-step cladding a CDs-embedded ZnO amorphous overlayer on vertically aligned metal oxide nanowires. This strategy involved the double role of hexamethylenetetramine (HMTA) in the ethylene glycol (EG) solvent mixed with a controllable trace amount of water. In the water-deficient synthetic system, a limited portion of HMTA served as the pH buffer and hydroxyl source to force the hydrolytic process of zinc ions for the production of ZnO.
View Article and Find Full Text PDFWe propose a high-performance vector torsion sensor based on an in-fiber Mach-Zehnder interferometer (MZI), which consists of a straight waveguide inscribed in the core-cladding boundary of the SMF by a femtosecond laser in only one step. The length of the in-fiber MZI is 5 mm, and the whole fabrication time does not exceed 1 min. The asymmetric structure makes the device have high polarization dependence, and the transmission spectrum shows a strong polarization-dependent dip.
View Article and Find Full Text PDFLangmuir
August 2022
Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States.
Superhydrophobic surface-based optofluidics have been introduced to biosensors and unconventional optics with unique advantages, such as low light loss and power consumption. However, most of these platforms were made with planar-like microstructures and nanostructures, which may cause bonding issues and result in significant waveguide loss. Here, we introduce a fully enclosed superhydrophobic-based optofluidics system, enabled by a one-step microstereolithography procedure.
View Article and Find Full Text PDF